49 research outputs found

    An ecological study of regional variation in work injuries among young workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The investigation of geographic variation in occupational injuries has received little attention. Young workers 15 to 24 years are of particular concern because they consistently show elevated occupational injury rates compared to older workers. The present study sought to: (a) to describe the geographic variation of work injuries; (b) to determine whether geographic variation remained after controlling for relevant demographic and job characteristics; (c) to identify the region-level factors that correlate with the geographic variation.</p> <p>Methods</p> <p>Using workers compensation claims and census data, we estimated claim rates per 100 full-time equivalents for 15 to 24 year olds in 46 regions in Ontario. A total of 21 region-level indicators were derived primarily from Census and Labour Force Survey data to reflect social and material deprivation of the region as well as demographic and employment characteristics of youth living in those areas.</p> <p>Results</p> <p>Descriptive findings showed substantial geographic variation in young worker injury rates, even after controlling for several job and demographic variables. Region-level characteristics such as greater residential stability were associated with low work injury rates. Also, regions with the lowest claim rates tended to have proportionally fewer cuts and burns than high-claim-rate regions.</p> <p>Conclusion</p> <p>The finding of substantial geographic variation in youth claim rates even after controlling for demographic and job factors can aid in targeting prevention resource. The association between region-level indicators such as residential stability and youth work injury suggests that work injury prevention strategies can be integrated with other local economic development measures. The findings partially support the notion that work safety measures may be unevenly distributed with respect to regional socio-economic factors.</p

    Molecular genetics of the persistent müllerian duct syndrome: a study of 19 families.

    No full text
    International audienceA rare form of familial male pseudohermaphroditism, the persistent Müllerian duct syndrome (PMDS) is characterized by persistence of uterus and Fallopian tubes in 46,XY phenotypic males and is ascribed to defects in the synthesis or action of anti-Müllerian hormone (AMH). Biologically, PMDS is heterogeneous: in some cases, bioactive AMH is normally expressed by testicular tissue while, in others, no AMH is produced, suggesting the possibility of an AMH gene mutation, several of which have already been described. Molecular analysis of the AMH gene has now been performed in 21 additional patients and their families. In 6 patients, with normal serum concentration of AMH, the AMH gene was normal or contained only polymorphisms and silent mutations, supporting the hypothesis that the condition is due to end-organ resistance. Nine novel mutations were discovered in the remaining subjects, with low or undetectable levels of serum AMH. These mutations, when present in homozygotes or compound heterozygotes, were associated with the PMDS phenotype, the same mutation never being observed in two different families. The three first exons of the AMH gene appear particularly mutation-prone, although they are less GC rich than the 2 last ones and code for the N-terminal part of the AMH protein, which is not in itself essential to bioactivity

    A 27 base-pair deletion of the anti-müllerian type II receptor gene is the most common cause of the persistent müllerian duct syndrome.

    No full text
    International audienceThe persistent müllerian duct syndrome, characterized by the lack of regression of müllerian derivatives, uterus and tubes in otherwise normally masculinized males, is a genetically transmitted disorder implicating either anti-müllerian hormone (AMH), a member of the transforming growth factor-beta superfamily, or its type II receptor, a serine/threonine kinase homologous to the receptors of other members of the transforming growth factor-beta superfamily. We have now performed molecular studies in a total of 38 families. The basis of the condition, namely 16 AMH and 16 AMH receptor mutations, was identified in 32 families. The type of genetic defect could be predicted from the level of serum AMH which is very low or undetectable in patients with AMH mutations and at the upper limit of normal in receptor mutations. Whereas AMH mutations are extremely diverse, patients from 10 out of 16 families with receptor mutations had a 27 bp deletion in exon 10 on at least one allele. This deletion is thus implicated in approximately 25% of patients with persistent müllerian duct syndrome. All AMH and AMH receptor mutations were consistent with an autosomal recessive mode of transmission

    Hormonal and cellular regulation of Sertoli cell anti-Müllerian hormone production in the postnatal mouse.

    No full text
    Anti-Müllerian hormone (AMH) is secreted by immature testicular Sertoli cells. Clinical studies have demonstrated a negative correlation between serum AMH and testosterone in puberty but not in the neonatal period. We investigated AMH regulation using mouse models mimicking physiopathological situations observed in humans. In normal mice, intratesticular, not serum, testosterone repressed AMH synthesis, explaining why AMH is downregulated in early puberty when serum testosterone is still low. In neonatal mice, AMH was not inhibited by intratesticular testosterone, due to the lack of expression of the androgen receptor in Sertoli cells. We had shown previously that androgen-insensitive patients exhibit elevated AMH in coincidence with gonadotropin activation. In immature normal and in androgen-insensitive Tfm mice, follicle stimulating hormone (FSH) administration resulted in elevation of AMH levels, indicating that AMH secretion is stimulated by FSH in the absence of the negative effect of androgens. The role of meiosis on AMH expression was investigated in Tfm and in pubertal XXSxrb mice, in which germ cells degenerate before meiosis. We show that meiotic entry acts in synergy with androgens to inhibit AMH. We conclude that AMH represents a useful marker of androgen and FSH action within the testis, as well as of the onset of meiosis
    corecore