550 research outputs found

    Efficient temperature sensing using photoluminescence of Er/Ybimplanted GaN thin films

    Get PDF
    tThe luminescence characteristics of GaN films implanted with Er at low doses were evaluated. The defect-related yellow luminescence (YL) and green luminescence (GL) bands observed under direct excitationwith 488 nm were attributed to the transitions via different charge levels of the same defect. The quench-ing behavior of the luminescence intensity either with the temperature or concentration variation can beattributed to nonradiative energy transfer (ET) and/or charge transfer by trapping impurities. The tem-perature dependence of the YL band allowed us to identify the defect responsible for this emission. Thebest candidate for this defect was found to be a nitrogen-vacancy. A GaN sample co-doped with Er3+andYb3+ions was prepared, and its optical properties were analyzed. The incorporation of Yb3+improved thePL emission intensity in the visible region. This feature results from the efficient ET processes betweenthese two doping ions. The color coordinate analysis indicates that Er3+/Yb3+co-doped GaN semiconduc-tor emits light with color in the white-light region. To investigate the temperature sensing applicationof the synthesized co-doped semiconductor, the temperature-sensing performance was evaluated usingthe fluorescence intensity ratio technique in the temperature range 200–300K. The significant temper-ature sensitivity indicates its potential as a temperature sensing probe. The maximum sensitivity was15 × 10−4K−1at 200 K

    From Cooper Pairs to Composite Bosons: A Generalized RPA Analysis of Collective Excitations

    Full text link
    The evolution of the ground state and the excitation spectrum of the two and three dimensional attractive Hubbard model is studied as the system evolves from a Cooper pair regime for weak attraction to a composite boson regime for a strong attraction.Comment: 20 pages RevTex, 7 figures on reques

    Deviations from Fermi-liquid behavior above TcT_c in 2D short coherence length superconductors

    Full text link
    We show that there are qualitative differences between the temperature dependence of the spin and charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simulations. The one-particle density of states shows a pseudogap above \tc with a depleted N(0)N(0) with decreasing TT. The susceptibility \cs and the low frequency spin spectral weight track N(0)N(0), which explains the spin-gap scaling: 1/T_1T \sim \cs(T). However the charge channel is dominated by collective behavior and the compressibility dn/dμdn/d\mu is TT-independent. This anomalous ``spin-charge separation'' is shown to exist even at intermediate ∣U∣|U| where the momentum distribution n(\bk) gives evidence for degenerate Fermi system.Comment: 4 pages (twocolumn format), 5 Postscript figure

    Possibility of p-wave pairing of composite fermions at ν=1/2\nu=1/2

    Full text link
    We find that for the pure Coulomb repulsion the composite Fermi sea at ν=1/2\nu=1/2 is on the verge of an instability to triplet pairing of composite fermions. It is argued that a transition into the paired state, described by a Pfaffian wave function, may be induced if the short-range part of the interaction is softened by increasing the thickness of the two-dimensional electron system.Comment: 14 pages, 3 eps figures include

    Half-Integral Spin-Singlet Quantum Hall Effect

    Full text link
    We provide numerical evidence that the ground state of a short range interaction model at ν=1/2\nu=1/2 is incompressible and spin-singlet for a wide range of repulsive interactions. Furthermore it is accurately described by a trial wave function studied earlier. For the Coulomb interaction we find that this wave function provides a good description of the lowest lying spin-singlet state, and propose that fractional quantum Hall effect would occur at ν=1/2\nu=1/2 if this state became the global ground state.Comment: Latex 13 pages, 3 figures upon reques

    Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions

    Full text link
    For an electron gas with delta-function attraction we investigate the crossover from weak- to strong-coupling supercoductivity in two and three dimensions. We derive analytic expressions for the stiffness of phase fluctuations and set up effective XY-models which serve to determine nonperturbatively the temperature of phase decoherence where superconductivity breaks down. We find the transition temperature T_c as a monotonous function of the coupling strength and carrier density both in two and three dimensions, and give analytic formulas for the merging of the temperature of phase decoherence with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address [email protected] in June and July 1999 were lost in a computer crash, so if your comments were not answered please send them once mor

    Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field

    Full text link
    We study the ground state of a clean two-dimensional electron liquid in a weak magnetic field where N≫1N \gg 1 lower Landau levels are completely filled and the upper level is partially filled. It is shown that the electrons at the upper Landau level form domains with filling factor equal to one and zero. The domains alternate with a spatial period of order of the cyclotron radius, which is much larger than the interparticle distance at the upper Landau level. The one-particle density of states, which can be probed by tunneling experiments, is shown to have a pseudogap linearly dependent on the magnetic field in the limit of large NN.Comment: Several errors correcte

    Electron Correlations in Partially Filled Lowest and Excited Landau Levels

    Full text link
    The electron correlations near the half-filling of the lowest and excited Landau levels (LL's) are studied using numerical diagonalization. It is shown that in the low lying states electrons avoid pair states with relative angular momenta R{\cal R} corresponding to positive anharmonicity of the interaction pseudopotential V(R)V({\cal R}). In the lowest LL, the super-harmonic behavior of V(R)V({\cal R}) causes Laughlin correlations (avoiding pairs with R=1{\cal R}=1) and the Laughlin-Jain series of incompressible ground states. In the first excited LL, V(R)V({\cal R}) is harmonic at short range and a different series of incompressible states results. Similar correlations occur in the paired Moore-Read ν=52\nu={5\over2} state and in the ν=73\nu={7\over3} and 83{8\over3} states, all having small total parentage from R=1{\cal R}=1 and 3 and large parentage from R=5{\cal R}=5. The ν=73\nu={7\over3} and 83{8\over3} states are different from Laughlin ν=13\nu={1\over3} and 23{2\over3} states and, in finite systems, occur at a different LL degeneracy (flux). The series of Laughlin correlated states of electron pairs at ν=2+2/(q2+2)=83\nu=2+2/(q_2+2)={8\over3}, 52{5\over2}, 125{12\over5}, and 73{7\over3} is proposed, although only in the ν=52\nu={5\over2} state pairing has been confirmed numerically. In the second excited LL, V(R)V({\cal R}) is sub-harmonic at short range and (near the half-filling) the electrons group into spatially separated larger ν=1\nu=1 droplets to minimize the number of strongly repulsive pair states at R=3{\cal R}=3 and 5.Comment: 10 pages, 8 figures, submitted to PR

    Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects

    Full text link
    We investigate the behavior of the superconducting transition temperature within a previously developed BCS-Bose Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin, further extended by Patton, can be used to derive a simple form for the superconducting transition temperature in the presence of a pseudogap. We extend previous work which addressed the case of s-wave pairing in jellium, to explore the solutions for T_c as a function of variable coupling in more physically relevant situations. We thereby ascertain the effects of reduced dimensionality, periodic lattices and a d-wave pairing interaction. Implications for the cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published versio

    Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

    Get PDF
    We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor ν≫1\nu \gg 1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the CDW state can exist if the Landau level broadening 1/2τ1/2\tau does not exceed the critical value 1/2τc=0.038ωH1/2\tau_{c}=0.038\omega_{H}. Our analysis of weak crystallization corrections to the mean-field results shows that these corrections are of the order of (1/ν)2/3≪1(1/\nu)^{2/3}\ll 1 and therefore can be neglected
    • …
    corecore