5,165 research outputs found
Nickel layers on indium arsenide
We report here on the preparation and characterization of InAs substrates for in situ deposition of ferromagnetic contacts, a necessary precursor for semiconductor devices based on spin injection. InAs has been grown on InAs(111)A and (100) substrates by molecular-beam epitaxy and then metalized in situ in order to better understand the mechanisms that inhibit spin injection into a semiconductor. Initial x-ray characterization of the samples indicate the presence of nickel arsenides and indium–nickel compounds forming during deposition at temperatures above room temperature. Several temperature ranges have been investigated in order to determine the effect on nickel-arsenide formation. The presence of such compounds at the interface could greatly reduce the spin-injection efficiency and help elucidate previous unsuccessful attempts at measuring spin injection into InAs
Telemedicine Quality Improvement
Telemedicine use has increased dramatically since the advent of the COVID-19 pandemic in the spring of 2020. However, not all patients and physicians were prepared for this rapid change, and little evaluation of these new mechanisms for delivery of healthcare has occurred thus far. This community project explores patient and physician perspectives on the use of telemedicine in place of in-person visits and makes recommendations for future improvements. Ultimately, telemedicine use will not likely diminish any time soon, making it increasingly important to triage patient visits to determine which would lend themselves well to the telemedicine format. As this project shows, not all visits do, which has lead to both physician and patient dissatisfaction since the change.https://scholarworks.uvm.edu/fmclerk/1678/thumbnail.jp
Demonstration of a robust pseudogap in a three-dimensional correlated electronic system
We outline a partial-fractions decomposition method for determining the
one-particle spectral function and single-particle density of states of a
correlated electronic system on a finite lattice in the non self-consistent
T-matrix approximation to arbitrary numerical accuracy, and demonstrate the
application of these ideas to the attractive Hubbard model. We then demonstrate
the effectiveness of a finite-size scaling ansatz which allows for the
extraction of quantities of interest in the thermodynamic limit from this
method. In this approximation, in one or two dimensions, for any finite lattice
or in the thermodynamic limit, a pseudogap is present and its energy diverges
as Tc is approached from above; this is an unphysical manifestation of using an
approximation that predicts a spurious phase transition in one or two
dimensions. However, in three dimensions one expects the transition predicted
by this approximation to represent a true continuous phase transition, and in
the thermodynamic limit any pseudogap predicted by this formulation will remain
finite. We have applied our method to the attractive Hubbard model on a
three-dimensional simple cubic lattice, and find that for intermediate coupling
a prominent pseudogap is found in the single-particle density of states, and
this gap persists over a large temperature range. In addition, we also show
that for weak coupling a pseudogap is also present. The pseudogap energy at the
transition temperature is almost a factor of three larger than the T=0 BCS gap
for intermediate coupling, whereas for weak coupling the pseudogap and BCS gap
energies are essentially equal.Comment: 28 pages, 9 figure
Spin pumping by a field-driven domain wall
We calculate the charge current in a metallic ferromagnet to first order in
the time derivative of the magnetization direction. Irrespective of the
microscopic details, the result can be expressed in terms of the conductivities
of the majority and minority electrons and the non-adiabatic spin transfer
torque parameter . The general expression is evaluated for the specific
case of a field-driven domain wall and for that case depends strongly on the
ratio of and the Gilbert damping constant. These results may provide an
experimental method to determine this ratio, which plays a crucial role for
current-driven domain-wall motion.Comment: 4 pages, 1 figure v2: some typos corrected v3: published versio
Description of the PMAD DC test bed architecture and integration sequence
NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility
Demand Curve Shifts in Multi-Unit Auctions: Evidence from a Laboratory Experiment
Basic economic theory predicts that a consumer's willingness to pay for a good is affected by the presence of complements and substitutes. In an auction setting, this theory implies that the presence of complements would increase bid prices for a good, while the presence of substitutes would decrease bid prices for a good. However, several experimental auction studies have sold complementary or substitutable products without regard for the effects these actions could have on bidding behavior. Using data from an experimental auction specifically designed to test the effect of complements and substitutes on bids, we used both unconditional tests and conditional tests where we derived demand flexibilities to analyze whether selling complementary and substitutable products has an effect on bids. Our results show that the availability of complementary and substitutable products affects bids in the expected directions. This finding has important implications for researchers who design experimental auctions.Research Methods/ Statistical Methods,
Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine
The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades
Effect of Buffer Layer and III/V Ratio on the Surface Morphology of GaN Grown by MBE
The surface morphology of GaN is observed by atomic force microscopy for growth on GaN and AlN buffer layers and as a function of III/V flux ratio. Films are grown on sapphire substrates by molecular beam epitaxy using a radio frequency nitrogen plasma source. Growth using GaN buffer layers leads to N-polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Ga-rich as possible, although Ga droplets tend to form. Ga-polar films can be grown on AlN buffer layers, with the surface morphology determined by the conditions of buffer layer deposition as well as the III/V ratio for growth of the GaN layer. Near-stoichiometric buffer layer growth conditions appear to support the flattest surfaces in this case. Three defect types are typically observed in GaN films on AlN buffers, including large and small pits and "loop" defects. It is possible to produce surfaces free from large pit defects by growing thicker films under more Ga-rich conditions. In such cases the surface roughness can be reduced to less than 1 nm RMS
- …