150 research outputs found

    Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    Get PDF
    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein

    Lunar surface mechanical properties

    Get PDF
    The surface material at the Surveyor 5 site is granular and slightly cohesive. Spacecraft footpads plowed trenches in this material as the spacecraft slid during landing. For a compressible soil model, a static bearing capacity of 2.7 newtons/cm^2 gave best agreement with the observations. Static firing of the vernier engines against the surface moved surface particles; a crater 20 cm in diameter and about 1 cm deep was produced, apparently at engine shutdown. The permeability of the soil to gases, to a depth of about 25 cm, is 1 × 10^(−8) cm^2, corresponding to soil particles mostly 2 to 60 μ in diameter

    Lunar surface mechanical properties — Surveyor 1

    Get PDF
    Engineering telemetry data and lunar surface photographs by Surveyor 1 have been evaluated for information on the mechanical properties of the lunar surface material at the Surveyor 1 landing site. Based primarily on photographic evidence, estimates of soil density, cohesion, and other soil characteristics are presented. Also, the mechanisms in which the lunar material is believed to have failed under the footpad impacts are discussed. Because dynamic soil reactions cannot be interpreted directly from the available data, a comparative study using computer-simulated landings was initiated. Preliminary results of this study, which is still in progress, are presented

    Principal scientific results of the Surveyor 3 Mission

    Get PDF
    The fine lunar surface material at the Surveyor 3 landing site has about 3 × 10^3-dyne/cm^2 cohesion, 35° angle of internal friction, 3 × 10^5-dyne/cm^2 static bearing capacity. A small rock withstood a local pressure of 2 × 10^7 dynes/cm^2. Soil strength and density increase significantly at depths of a few centimeters. Exposed surface has a considerably higher albedo than the material just below it. The photometric function changed when the surface was slightly compressed. Fine surface material appears to be gradually moving downslope

    Principal science results from Surveyor 5

    Get PDF
    The area of Mare Tranquillitatis in which Surveyor 5 landed appears to be similar to sites in Oceanus Procellarum. The gross elemental composition of the surface material and its response to a magnet are similar to those of a basalt. The debris layer appears to consist of aggregates of the order of 1 cm in diameter consisting of fine grains and set in a matrix of less-coherent fine grains (most of them 2 to 60 μ in diameter) mixed with some rocky fragments 1 mm and larger. The static bearing strength is less than 10^4 dynes/cm^2 for the upper few millimeters and averages approximately 3 × 10^5 dynes/cm^2 for the upper few centimeters. The evidence suggests that chemical differentiation has occurred in the moon, probably owing to internal heat sources; this is consistent with the hypothesis that the maria are basaltic volcanic flows

    Two-sided Grassmann-Rayleigh quotient iteration

    Full text link
    The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix CC. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of pp-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right pp-dimensional invariant subspaces of CC. Moreover, Grassmannian versions of the Rayleigh quotient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian eigenproblem.Comment: The text is identical to a manuscript that was submitted for publication on 19 April 200

    Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS
    • …
    corecore