62 research outputs found

    Effect of mobile carrier on the performance of pvam–nanocellulose facilitated transport membranes for co2 capture

    Get PDF
    Facilitated transport membranes obtained by coupling polyvinylamine with highly charged carboxymethylated nanocellulose fibers were studied considering both water sorption and gas permeation experiments. In particular, the effect of the L-arginine as a mobile carrier was investigated to understand possible improvements in CO2 transport across the membranes. The results show that L-arginine addition decreases the water uptake of the membrane, due to the lower polyvinylamine content, but was able to improve the CO2 transport. Tests carried on at 35â—¦ C and high relative humidity indeed showed an increase of both CO2 permeability and selectivity with respect to nitrogen and methane. In particular, the CO2 permeability increased from 160 to about 340 Barrer when arginine loading was increased from 0 to 45 wt%. In the same conditions, selectivity with respect to nitrogen was more than doubled, increasing from 20 to 45. Minor improvements were instead obtained with respect to methane; CO2 /CH4 selectivity, indeed, even in presence of the mobile carrier, was limited to about 20

    Polyvinylamine membranes containing graphene-based nanofillers for carbon capture applications

    Get PDF
    In the present study, the separation performance of new self-standing polyvinylamine (PVAm) membranes loaded with few-layer graphene (G) and graphene oxide (GO) was evaluated, in view of their use in carbon capture applications. PVAm, provided by BASF as commercial product named Lupamin\u2122, was purified obtaining PVAm films with two degrees of purification: Low Grade (PVAm-LG) and High Grade (PVAm-HG). These two-grade purified PVAm were loaded with 3 wt% of graphene and graphene oxide to improve mechanical stability: indeed, pristine tested materials proved to be brittle when dry, while highly susceptible to swelling in humid conditions. Purification performances were assessed through FTIR-ATR spectroscopy, DSC and TGA analysis, which were carried out to characterize the pristine polymer and its nanocomposites. In addition, the membranes\u2032 fracture surfaces were observed through SEM analysis to evaluate the degree of dispersion. Water sorption and gas permeation tests were performed at 35 \ub0C at different relative humidity (RH), ranging from 50% to 95%. Overall, composite membranes showed improved mechanical stability at high humidity, and higher glass transition temperature (Tg) with respect to neat PVAm. Ideal CO2/N2 selectivity up to 80 was measured, paired with a CO2 permeability of 70 Barrer. The membranes\u2019 increased mechanical stability against swelling, even at high RH, without the need of any crosslinking, represents an interesting result in view of possible further development of new types of facilitated transport composite membranes

    Synthesis and characterization of a benzoyl modified Pebax materials for gas separation applications

    Get PDF
    Pebax copolymers produced by Arkema are widely employed for different applications, including active molecular carriers and membranes for gas separation. In the present work, a new modification approach for Pebax®2533 is presented, along with the characterization of the newly obtained materials. Pebax was modified by grafting, through a nucleophilic acyl substitution, a benzoyl group on Polyamide12 block. The yield of the reaction was confirmed by FTIR and NMR analysis, while thermal DSC and TGA characterizations were then carried out on the polymeric products characterized by different degrees of substitution to understand their properties. Finally, self-standing films were obtained by casting and gas permeation tests were conducted at 35 °C using CO2, N2, CH4, O2 and He, in order to understand the potentiality of the new material as membrane for gas separation. DSC showed that in the modified Pebax, named “Benzoyl-P2533” (BP2533), the crystalline phase of the Nylon block was canceled, as expected, but at the same time the degree of crystallinity of the block of Polytetramethyleneoxide increased from 19%, measured for the unmodified Pebax, to a max of 35% for the fully substituted material. For this reason, gas permeability showed small but consistent increment, in the order of 10–11% for most of the gas tested, with the only exception being helium, where the increment resulted to be around 48%. As a consequence, the overall selectivity of CO2 against helium dropped with respect to pristine Pebax. For all the other gases, on the other hand the selectivity with respect to CO2 remained substantially constant, resulting in slight but neat improvement of the ability of the new material to separate this gas

    Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture

    Get PDF
    In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25

    Rapid increases in obesity in Jamaica, compared to Nigeria and the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight gain in adulthood is now common in many populations, ranging from modest gains in developing countries to a substantial percentage of body weight in some Western societies. To examine the rate of change across the spectrum of low to high-income countries we compared rates of weight change in samples drawn from three countries, Nigeria, Jamaica and the United States.</p> <p>Methods</p> <p>Population samples from Nigeria (n = 1,242), Jamaica (n = 1,409), and the US (n = 809) were selected during the period 1995–1999 in adults over the age of 19; participation rates in the original survey were 96%, 60%, and 60%, respectively. Weight in (kg) was measured on 3 different occasions, ending in 2005. Multi-level regression models were used to estimate weight change over time and pattern-mixture models were applied to assess the potential effect of missing data on estimates of the model parameters.</p> <p>Results</p> <p>The unadjusted weight gain rate (standard error) was 0.34(0.06), 1.26(0.12), 0.34(0.19) kg/year among men and 0.43(0.06), 1.28(0.10), 0.40(0.15) kg/year among women in Nigeria, Jamaica, US, respectively. Regression-adjusted weight change rates were significantly different across country, sex, and baseline BMI. Adjusted weight gain in Nigeria, Jamaica and US was 0.31(0.05), 1.37(.04), and 0.52(0.05) kg/year respectively. Women in Nigeria and the US had higher weight gains than men, with the converse observed among Jamaicans. The obese experienced weight loss across all three samples, whereas the normal weight (BMI < 25) had significant weight gains. Missing data patterns had an effect on the rates of weight change.</p> <p>Conclusion</p> <p>Weight change in sample cohorts from a middle-income country was greater than in cohorts from either of the low- or high-income countries. The steep trajectory of weight gain in Jamaica, relative to Nigeria and the US, is most likely attributable to the accelerating effects of the cultural and behavioral shifts which have come to bear on transitional societies.</p

    Hydrothermal Alteration of Ultramafic Rocks in Ladon Basin, Mars - Insights From CaSSIS, HiRISE, CRISM, and CTX

    Get PDF
    The evolution of the Ladon basin has been marked by intense geological activity and the discharge of huge volumes of water from the Martian highlands to the lowlands in the late Noachian and Hesperian. We explore the potential of the ExoMars Trace Gas Orbiter/Color and Stereo Surface Imaging System color image data set for geological interpretation and show that it is particularly effective for geologic mapping in combination with other data sets such as HiRISE, Context, and Compact Reconnaissance Imaging Spectrometer for Mars. The study area displays dark lobate flows of upper Hesperian to early Amazonian age, which were likely extruded from a regional extensional fault network. Spectral analysis suggests that these flows and the underlying rocks are ultramafic. Two distinct altered levels are observed below the lobate flows. The upper, yellow-orange level shows hundreds of structurally controlled narrow ridges reminiscent of ridges of listwanite, a suite of silicified, fracture-controlled silica-carbonate rocks derived from an ultramafic source and from serpentine. In addition to serpentinite, the detected mineral assemblages may include chlorite, carbonates, and talc. Kaolin minerals are detected in the lower, white level, which could have formed by groundwater alteration of plagioclase in the volcanic pile. Volcanism, tectonics, hydrothermal activity, and kaolinization are interpreted to be coeval, with hydrothermal activity and kaolinization controlled by the interactions between the aquifer and the hot, ultramafic lobate flows. Following our interpretations, East Ladon may host the first listwanite ridges described on Mars, involving a hydrothermal system rooted in a Hesperian aquifer and affecting ultramafic rocks from a magmatic source yet to be identified

    The obesity epidemic

    No full text
    • …
    corecore