1,055 research outputs found

    A solvable model of a random spin-1/2 XY chain

    Full text link
    The paper presents exact calculations of thermodynamic quantities for the spin-1/2 isotropic XY chain with random lorentzian intersite interaction and transverse field that depends linearly on the surrounding intersite interactions.Comment: 14 pages (Latex), 2 tables, 13 ps-figures included, (accepted for publication in Phys.Rev.B

    Multicritical crossovers near the dilute Bose gas quantum critical point

    Full text link
    Many zero temperature transitions, involving the deviation in the value of a U(1)U(1) conserved charge from a quantized value, are described by the dilute Bose gas quantum critical point. On such transitions, we study the consequences of perturbations which break the symmetry down to ZNZ_N in dd spatial dimensions. For the case d=1d=1, N=2N=2, we obtain exact, finite temperature, multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure

    Exact solution of Markovian master equations for quadratic fermi systems: thermal baths, open XY spin chains, and non-equilibrium phase transition

    Full text link
    We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of 4n x 4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how to compute all physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium-steady state to external (bath or bulk) parameters. Studying the heat transport we find negative thermal conductance for sufficiently strong thermal driving, as well as non-monotonic dependence of the heat current on the strength of the bath coupling.Comment: 24 pages, 12 figures, submitted to New Journal of Physics, Focus issue "Quantum Information and Many-Body Theory

    The Crab pulsar light curve in the soft gamma ray range: FIGARO II results

    Get PDF
    The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie

    Density-Matrix Spectra of Solvable Fermionic Systems

    Full text link
    We consider non-interacting fermions on a lattice and give a general result for the reduced density matrices corresponding to parts of the system. This allows to calculate their spectra, which are essential in the DMRG method, by diagonalizing small matrices. We discuss these spectra and their typical features for various fermionic quantum chains and for the two-dimensional tight-binding model.Comment: 12 pages and 9 figure

    On the merit of a Central Limit Theorem-based approximation in statistical physics

    Full text link
    The applicability conditions of a recently reported Central Limit Theorem-based approximation method in statistical physics are investigated and rigorously determined. The failure of this method at low and intermediate temperature is proved as well as its inadequacy to disclose quantum criticalities at fixed temperatures. Its high temperature predictions are in addition shown to coincide with those stemming from straightforward appropriate expansions up to (k_B T)^(-2). Our results are clearly illustrated by comparing the exact and approximate temperature dependence of the free energy of some exemplary physical systems.Comment: 12 pages, 1 figur

    Magnetic and quadrupolar order in a one-dimensional ferromagnet with cubic crystal-field anisotropy

    Full text link
    The zero temperature phase diagram of a one-dimensional S=2 Heisenberg ferromagnet with single-ion cubic anisotropy is studied numerically using the density-matrix renormalization group method. Evidence is found that although the model does not involve quadrupolar couplings, there is a purely quadrupolar phase for large values of the anisotropy. The phase transition between the magnetic and quadrupolar phases is continuous and it seems to be characterized by Ising critical exponents.Comment: 11 pages, 7 figures, REVTeX, accepted in Phys. Rev. B (scheduled on June 99

    Entanglement and Quantum Phase Transitions via Adiabatic Quantum Computation

    Full text link
    For a finite XY chain and a finite two-dimensional Ising lattice, it is shown that the paramagnetic ground state is adiabatically transformed to the GHZ state in the ferromagnetic phase by slowly turning on the magnetic field. The fidelity between the GHZ state and an adiabatically evolved state shows a feature of the quantum phase transition.Comment: Revise
    corecore