3,472 research outputs found
Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank
We describe an F-statistic search for continuous gravitational waves from
galactic white-dwarf binaries in simulated LISA Data. Our search method employs
a hierarchical template-grid based exploration of the parameter space. In the
first stage, candidate sources are identified in searches using different
simulated laser signal combinations (known as TDI variables). Since each source
generates a primary maximum near its true "Doppler parameters" (intrinsic
frequency and sky position) as well as numerous secondary maxima of the
F-statistic in Doppler parameter space, a search for multiple sources needs to
distinguish between true signals and secondary maxima associated with other,
"louder" signals. Our method does this by applying a coincidence test to reject
candidates which are not found at nearby parameter space positions in searches
using each of the three TDI variables. For signals surviving the coincidence
test, we perform a fully coherent search over a refined parameter grid to
provide an accurate parameter estimation for the final candidates. Suitably
tuned, the pipeline is able to extract 1989 true signals with only 5 false
alarms. The use of the rigid adiabatic approximation allows recovery of signal
parameters with errors comparable to statistical expectations, although there
is still some systematic excess with respect to statistical errors expected
from Gaussian noise. An experimental iterative pipeline with seven rounds of
signal subtraction and re-analysis of the residuals allows us to increase the
number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit
The search for black hole binaries using a genetic algorithm
In this work we use genetic algorithm to search for the gravitational wave
signal from the inspiralling massive Black Hole binaries in the simulated LISA
data. We consider a single signal in the Gaussian instrumental noise. This is a
first step in preparation for analysis of the third round of the mock LISA data
challenge. We have extended a genetic algorithm utilizing the properties of the
signal and the detector response function. The performance of this method is
comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico
Classical and quantum massive cosmology for the open FRW universe
In an open Friedmann-Robertson-Walker (FRW) space background, we study the
classical and quantum cosmological models in the framework of the recently
proposed nonlinear massive gravity theory. Although the constraints which are
present in this theory prevent it from admitting the flat and closed FRW models
as its cosmological solutions, for the open FRW universe, it is not the case.
We have shown that, either in the absence of matter or in the presence of a
perfect fluid, the classical field equations of such a theory adopt physical
solutions for the open FRW model, in which the mass term shows itself as a
cosmological constant. These classical solutions consist of two distinguishable
branches: One is a contacting universe which tends to a future singularity with
zero size, while another is an expanding universe having a past singularity
from which it begins its evolution. A classically forbidden region separates
these two branches from each other. We then employ the familiar canonical
quantization procedure in the given cosmological setting to find the
cosmological wave functions. We use the resulting wave function to investigate
the possibility of the avoidance of classical singularities due to quantum
effects. It is shown that the quantum expectation values of the scale factor,
although they have either contracting or expanding phases like their classical
counterparts, are not disconnected from each other. Indeed, the classically
forbidden region may be replaced by a bouncing period in which the scale factor
bounces from the contraction to its expansion eras. Using the Bohmian approach
of quantum mechanics, we also compute the Bohmian trajectory and the quantum
potential related to the system, which their analysis shows are the direct
effects of the mass term on the dynamics of the universe.Comment: 18 pages, 7 figures, typos corrected, refs. adde
Forced motion near black holes
We present two methods for integrating forced geodesic equations in the Kerr spacetime. The methods can accommodate arbitrary forces. As a test case, we compute inspirals caused by a simple drag force, mimicking motion in the presence of gas.We verify that both methods give the same results for this simple force. We find that drag generally causes eccentricity to increase throughout the inspiral. This is a relativistic effect qualitatively opposite to what is seen in gravitational-radiation-driven inspirals, and similar to what others have observed in hydrodynamic simulations of gaseous binaries. We provide an
analytic explanation by deriving the leading order relativistic correction to the Newtonian dynamics. If
observed, an increasing eccentricity would thus provide clear evidence that the inspiral was occurring in a
nonvacuum environment. Our two methods are especially useful for evolving orbits in the adiabatic regime. Both use the method of osculating orbits, in which each point on the orbit is characterized by the parameters of the geodesic with the same instantaneous position and velocity. Both methods describe the orbit in terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two angular variables that increase monotonically and are relativistic generalizations of the eccentric anomaly. The two methods differ in their treatment of the orbital phases and the representation of the force. In the first method, the geodesic phase and phase constant are evolved together as a single orbital phase parameter, and the force is expressed in terms of its components on the Kinnersley orthonormal tetrad. In
the second method, the phase constants of the geodesic motion are evolved separately and the force is
expressed in terms of its Boyer-Lindquist components. This second approach is a direct generalization of earlier work by Pound and Poisson [A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008).] for planar forces in a Schwarzschild background
Cosmology with minimal length uncertainty relations
We study the effects of the existence of a minimal observable length in the
phase space of classical and quantum de Sitter (dS) and Anti de Sitter (AdS)
cosmology. Since this length has been suggested in quantum gravity and string
theory, its effects in the early universe might be expected. Adopting the
existence of such a minimum length results in the Generalized Uncertainty
Principle (GUP), which is a deformed Heisenberg algebra between minisuperspace
variables and their momenta operators. We extend these deformed commutating
relations to the corresponding deformed Poisson algebra in the classical limit.
Using the resulting Poisson and Heisenberg relations, we then construct the
classical and quantum cosmology of dS and Ads models in a canonical framework.
We show that in classical dS cosmology this effect yields an inflationary
universe in which the rate of expansion is larger than the usual dS universe.
Also, for the AdS model it is shown that GUP might change the oscillatory
nature of the corresponding cosmology. We also study the effects of GUP in
quantized models through approximate analytical solutions of the Wheeler-DeWitt
(WD) equation, in the limit of small scale factor for the universe, and compare
the results with the ordinary quantum cosmology in each case.Comment: 11 pages, 4 figures, to appear in IJMP
Quantum Hall Effect in Bernal Stacked and Twisted Bilayer Graphene Grown on Cu by Chemical Vapor Deposition
We examine the quantum Hall effect in bilayer graphene grown on Cu substrates
by chemical vapor deposition. Spatially resolved Raman spectroscopy suggests a
mixture of Bernal (A-B) stacked and rotationally faulted (twisted) domains.
Magnetotransport measurements performed on bilayer domains with a wide 2D band
reveal quantum Hall states (QHSs) at filling factors consistent
with a Bernal stacked bilayer, while magnetotransport measurements in bilayer
domains defined by a narrow 2D band show a superposition of QHSs of two
independent monolayers. The analysis of the Shubnikov-de Haas oscillations
measured in twisted graphene bilayers provides the carrier density in each
layer as a function of the gate bias and the inter-layer capacitance.Comment: 5 pages, 4 figure
Building a stochastic template bank for detecting massive black hole binaries
Coalescence of two massive black holes is the strongest and most promising
source for LISA. In fact, gravitational signal from the end of inspiral and
merger will be detectable throughout the Universe. In this article we describe
the first step in the two-step hierarchical search for gravitational wave
signal from the inspiraling massive BH binaries. It is based on the routinely
used in the ground base gravitational wave astronomy method of filtering the
data through the bank of templates. However we use a novel Monte-Carlo based
(stochastic) method to lay a grid in the parameter space, and we use the
likelihood maximized analytically over some parameters, known as F-statistic,
as a detection statistic. We build a coarse template bank to detect
gravitational wave signals and to make preliminary parameter estimation. The
best candidates will be followed up using Metropolis-Hasting stochastic search
to refine the parameter estimation. We demonstrate the performance of the
method by applying it to the Mock LISA data challenge 1B (training data set).Comment: revtex4, 8 figure
- …