1,724 research outputs found

    A 100 GHz coplanar strip circuit tuned with a sliding planar backshort

    Get PDF
    A means of mechanically altering the electrical length of a planar transmission line would greatly enhance the use of integrated circuit technology at millimeter and submillimeter wavelengths. Such a mechanically adjustable planar RF tuning element, successfully demonstrated at 100 GHz, is described here. It consists of a thin metallic sheet, with appropriately sized and spaced holes, which slides along on top of a dielectric-coated coplanar-strip transmission line. Multiple RF reflections caused by this structure add constructively, resulting in a movable RF short circuit, with |s11|≫APX=/-0.3 dB, which can be used to vary the electrical length of a planar tuning stub. The sliding short is used here to produce a 2-dB improvement in the response of a diode detector. This tuning element can be integrated with planar circuits to compensate for the effect of parasitic reactance inherent in various devices including semiconductor diodes and superconductor-insulator-superconductor (SIS) junctions

    An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    Get PDF
    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology

    Micromechanical tuning elements in a 620-GHz monolithic integrated circuit

    Get PDF
    While monolithic integrated-circuit technology promises a practical means for realizing reliable reproducible planar millimeter and submillimeter-wave circuits, conventional planar circuits do not allow for critical post-fabrication optimization of performance. A 620-GHz quasi-optical monolithic detector circuit is used here to demonstrate the performance of two integrated micromechanical planar tuning elements. This is the first reported demonstration of integrated micromechanical tuning at submillimeter wavelengths. The tuning elements, called sliding planar backshorts (SPBs), are used to adjust the electrical length of planar transmission-line tuning stubs to vary the power delivered between a substrate-lens coupled planar antenna and a thin-film bismuth detector over a range of nearly 15 dB. The circuit performance agrees with theoretical calculations and microwave measurements of a -0.06-dB reflection coefficient made for a scale model of the integrated tuners. The demonstrated tuning range for the SPB tuners indicates that they can be valuable for characterizing components in developmental circuits and for optimizing the in-use performance of various millimeter and submillimeter-wave integrated circuits

    Chandra Observations of 1RXS J141256.0+792204 (Calvera)

    Full text link
    We report the results of a 30 ks Chandra ACIS-S observation of the isolated compact object 1RXS J141256.0+792204 (Calvera). The X-ray spectrum is adequately described by an absorbed neutron star hydrogen atmosphere model with an effective temperature at infinity of 88.3 +/- 0.8 eV and radiation radius at infinity of 4.1 +/- 0.1 km/kpc. The best-fit blackbody spectrum yields parameters consistent with previous measurements; although the fit itself is not statistically acceptable, systematic uncertainties in the pile-up correction may contribute to this. We find marginal evidence for narrow spectral features in the X-ray spectrum between 0.3 and 1.0 keV. In one interpretation, we find evidence at 81%-confidence for an absorption edge at 0.64 (+0.08) (-0.06) keV with an equivalent width of ~70 eV; if this feature is real, it is reminiscent of features seen in the isolated neutron stars RX J1605.3+3249, RX J0720.4-3125, and 1RXS J130848.6+212708 (RBS 1223). In an alternative approach, we find evidence at 88%-confidence for an unresolved emission line at energy 0.53 +/- 0.02 keV, with an equivalent width of ~28 eV; the interpretation of this feature, if real, is uncertain. We search for coherent pulsations up to the Nyquist frequency of 1.13 Hz and set an upper limit of 8.0% rms on the strength of any such modulation. We derive an improved position for the source and set the most rigorous limits to-date on any associated extended emission on arcsecond scales. Our analysis confirms the basic picture of Calvera as the first isolated compact object in the ROSAT/Bright Source Catalog discovered in six years, the hottest such object known, and an intriguing target for multiwavelength study.Comment: Submitted to ApJ. AASTeX, 19 pages, 2 figure

    Freeze-Thaw Cycling as a Chemical Weathering Agent on a Cold and Icy Mars

    Get PDF
    Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined. In addition, ice and glaciation have been major geologic agents throughout the later Hesperian and Amazonian eras. One process that can act in such climates is repeated freezing and thawing of water on the surface and in the subsurface, and is significant because it can occur anywhere with an active layer and could have persisted for a time after liquid water was no longer stable on Mars surface. As freeze-thaw is the dominant mechanical weathering process in most glacial/periglacial terrains, it was likely a significant geomorphologic driver at local to regional scales during past climates, and would potentially have been most active when day-average surface temperatures exceeded 0 C for part of the year. Indeed, freeze-thaw involving liquid water in the Amazonian is evidenced by abundant geomorphic features including polygonal ground and solifluction lobes requiring seasonal thawing. In addition to physical modification, freezing can drive solutions towards supersaturation and force dissolved solutes out as precipitates. In Mars-like terrains, dissolved solutes are typically dominated by silica. In polar regions on Earth, freeze-thaw cycles have been shown to promote deposition of silica, and freeze-thaw experiments on synthetic solutions found stable amorphous silica that built up over multiple cycles. Freeze-thaw may therefore be an important but overlooked chemical weathering process on Mars. However, our ability to assess its impact on alteration of martian terrains is majorly limited by the current lack of understanding of the alteration phases produced (and formation rates) under controlled freeze-thaw weathering of Mars-relevant materials. To address this knowledge gap, we report results from (1) freeze-thaw weathering products found at a glacial Mars analog site at the Three Sisters, Oregon, and (2) new controlled freeze-thaw experiments on basaltic material

    Contract and Procedure

    Get PDF
    This paper examines both the theoretical underpinnings and empirical picture of procedural contracts. Procedural contracts may be understood as contracts in which parties regulate not merely their commercial relations but also the procedures by which disputes over those relations will be resolved. Those procedural contracts regulate not simply the forum in which disputes will be resolved (arbitration vs litigation) but also the applicable procedural framework (discovery, class action waivers, remedies limitations, etc.). At a theoretical level, this paper explores both the limits on parties\u27 ability to regulate procedure by contract (at issue in the Supreme Court\u27s recent Rent-A-Center decision) and the scope of an arbitrator\u27s ability to fill gaps in parties\u27 procedural contracts (at issue in the Supreme Court\u27s recent Stolt-Nielsen decision). At an empirical level, this paper taps a largely unexplored database of credit card contracts available at the Federal Reserve in order to examine actual practices in the use of procedural contracts

    Highly efficient frequency triplers in the millimeter wave region incorporating a back-to-back configuration of two varactor diodes

    Get PDF
    This paper reports on the recent development of monolithic frequency tripler array employing a back-to-back configuration of varactor diodes. Even harmonic idler circuits are unnecessary in this design. Furthermore, no external dc bias is required. The arrangement results in highly efficient, easily-fabricated and inexpensive frequency triplers
    • …
    corecore