8,985 research outputs found

    Noise reduction studies for the U-10 airplane

    Get PDF
    A study was undertaken by the NASA Langley Research Center to determine the noise reduction potential of the U-10 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the basic airplane noise signature. Two modifications to the airplane configuration are suggested as having the best potential for substantially reducing aural detection distance with small penalty to airplane performance or stability and control. These modifications include changing the present 3-blade propeller to a 5-blade propeller, changing the propeller diameter, and changing the propeller gear ratio, along with the use of an engine exhaust muffler. The aural detection distance corresponding to normal cruising flight at an altitude of 1,000 ft over grassy terrain is reduced from 28,000 ft (5.3 miles) to about 50 percent of that value for modification 1, and to about 25 percent for modification 2. For the aircraft operating at an altitude of 300 ft, the analysis indicates that relatively straightforward modifications could reduce the aural detection distance to approximately 0.9 mile. Operation of the aircraft at greatly reduced engine speed (1650 rpm) with a 1.3-cu-ft muffler provides aural detection distances slightly lower than modification 1

    Tone-activated, remote, alert communication system

    Get PDF
    Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units

    Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    Get PDF
    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.Comment: 10 pages, 4 figure

    Atmosphere, Interior, and Evolution of the Metal-Rich Transiting Planet HD 149026b

    Full text link
    We investigate the atmosphere and interior of the new transiting planet HD 149026b, which appears to be very rich in heavy elements. We first compute model atmospheres at metallicities ranging from solar to ten times solar, and show how for cases with high metallicity or inefficient redistribution of energy from the day side, the planet may develop a hot stratosphere due to absorption of stellar flux by TiO and VO. The spectra predicted by these models are very different than cooler atmosphere models without stratospheres. The spectral effects are potentially detectable with the Spitzer Space Telescope. In addition the models with hot stratospheres lead to a large limb brightening, rather than darkening. We compare the atmosphere of HD 149026b to other well-known transiting planets, including the recently discovered HD 189733b, which we show have planet-to-star flux ratios twice that of HD 209458 and TrES-1. The methane abundance in the atmosphere of HD 189733b is a sensitive indicator of atmospheric temperature and metallicity and can be constrained with Spitzer IRAC observations. We then turn to interior studies of HD 149026b and use a grid of self-consistent model atmospheres and high-pressure equations of state for all components to compute thermal evolution models of the planet. We estimate that the mass of heavy elements within the planet is in the range of 60 to 93 M_earth. Finally, we discuss trends in the radii of transiting planets with metallicity in light of this new member of the class.Comment: Accepted to the Astrophysical Journal. 18 pages, including 10 figures. New section on the atmosphere of planet HD 189733b. Enhanced discussion of atmospheric Ti chemistry and core mass for HD 149026

    Strong-Coupling Expansion for the Hubbard Model

    Full text link
    A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in dd dimensions and compared with numerical results in d=1d=1. Third order expansion of the Green function suffices to exhibit both the Mott metal-insulator transition and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that some of the weak photoemission signals observed in one-dimensional systems such as SrCuO2SrCuO_2 should become stronger as temperature increases away from the spin-charge separated state.Comment: 4 pages, RevTex, 3 epsf figures include

    Superconductivity in the quasi-two-dimensional Hubbard model

    Full text link
    On the basis of spin and pairing fluctuation-exchange approximation, we study the superconductivity in quasi-two-dimensional Hubbard model. The integral equations for the Green's function are self-consistently solved by numerical calculation. Solutions for the order parameter, London penetration depth, density of states, and transition temperature are obtained. Some of the results are compared with the experiments for the cuprate high-temperature superconductors. Numerical techniques are presented in details. With these techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure

    Observations of electron gyroharmonic waves and the structure of the Io torus

    Get PDF
    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus
    corecore