12,203 research outputs found

    Design optimization of transonic airfoils

    Get PDF
    Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables

    Quark-Lepton Symmetry In Five Dimensions

    Get PDF
    We construct a complete five dimensional Quark-Lepton symmetric model, with all fields propagating in the bulk. The extra dimension forms an S1/Z2×Z2′S^1/Z_2\times Z_2' orbifold with the zero mode fermions corresponding to standard model quarks localised at one fixed point. Zero modes corresponding to left(right)-chiral leptons are localised at (near) the other fixed point. This localisation pattern is motivated by the symmetries of the model. Shifting the right-handed neutrinos and charged leptons slightly from the fixed point provides a new mechanism for understanding the absence of relations of the type me=mum_e=m_u or me=mdm_e=m_d in Quark-Lepton symmetric models. Flavour changing neutral currents resulting from Kaluza Klein gluon exchange, which typically arise in the quark sector of split fermion models, are suppressed due to the localisation of quarks at one point. The separation of quarks and leptons in the compact extra dimension also acts to suppress the proton decay rate. This permits the extra dimension to be much larger than that obtained in a previous construct, with the bound 1/R≳301/R\gtrsim30 TeV obtained.Comment: 12 pages, references added to match published versio

    Monopoles and Instantons in String Theory

    Get PDF
    In recent work, several classes of solitonic solutions of string theory with higher-membrane structure have been obtained. These solutions can be classified according to the symmetry possessed by the solitons in the subspace of the spacetime transverse to the membrane. Solitons with four-dimensional spherical symmetry represent instanton solutions in string theory, while those with three-dimensional spherical symmetry represent magnetic monopole-type solutions. For both of these classes, we discuss bosonic as well as heterotic solutions.Comment: 16 page

    A non-associative quantum mechanics

    Full text link
    A non-associative quantum mechanics is proposed in which the product of three and more operators can be non-associative one. The multiplication rules of the octonions define the multiplication rules of the corresponding operators with quantum corrections. The self-consistency of the operator algebra is proved for the product of three operators. Some properties of the non-associative quantum mechanics are considered. It is proposed that some generalization of the non-associative algebra of quantum operators can be helpful for understanding of the algebra of field operators with a strong interaction.Comment: one typo in Eq. (23) is correcte

    A Consistent Resolution of Possible Anomalies in B^0 --> phi K_S and B^+ --> eta' K^+ Decays

    Full text link
    In the framework of R-parity violating (\rpv) supersymmetry, we try to find a consistent explanation for both recently measured CP asymmetry in B^0 --> phi K_S decay and the large branching ratio of B^{+/-} --> eta' K^{+/-} decay, which are inconsistent with the Standard Model (SM) prediction. We also investigate other charmless hadronic B --> PP and B --> VP decay modes whose experimental data favor the SM: for instance, recently measured CP asymmetries in B^0 --> eta^{prime} K_S and B^0 --> J / Psi K_S. We find that all the observed data can be accommodated for certain values of \rpv couplings.Comment: 14 pages, 2 figures, Revtex, minor changes, to appear in Phys. Rev. Let

    Nuclear reactor power as applied to a space-based radar mission

    Get PDF
    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project

    Bosonisation Excercise in Three Dimensions: Gauged Massive Thirring Model

    Get PDF
    Bosonisation of the massive Thirring model, with a non-minimal and non-abelian gauging is studied in 2+1-dimensions. The static abelian model is solved completely in the large fermion mass limit and the spectrum is obtained. The non-abelian model is solved for a restricted class of gauge fields. In both cases explicit expressions for bosonic currents corresponding to the fermion currents are given.Comment: 11 pages, LaTeX, E-mail: [email protected]

    Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data of heterogeneous cell populations

    Get PDF
    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of "kinetic heterogeneity" in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a mechanistic way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length

    Turbulent convection: comparing the moment equations to numerical simulations

    Get PDF
    The non-local hydrodynamic moment equations for compressible convection are compared to numerical simulations. Convective and radiative flux typically deviate less than 20% from the 3D simulations, while mean thermodynamic quantities are accurate to at least 2% for the cases we have investigated. The moment equations are solved in minutes rather than days on standard workstations. We conclude that this convection model has the potential to considerably improve the modelling of convection zones in stellar envelopes and cores, in particular of A and F stars.Comment: 10 pages (6 pages of text including figure captions + 4 figures), Latex 2e with AAS Latex 5.0 macros, accepted for publication in ApJ

    Confined Harmonically Interacting Spin-Polarized Fermions in a Magnetic Field: Thermodynamics

    Full text link
    We investigate the combined influence of a magnetic field and a harmonic interparticle interaction on the thermodynamic properties of a finite number of spin polarized fermions in a confiment potential. This study is an extension using our path integral approach of symmetrized density matrices for identical particles. The thermodynamical properties are calculated for a three dimensional model of N harmonically interacting spin polarized fermions in a parabolic potential well in the presence of a magnetic field. The free energy and the internal energy are obtained for a limited number of particles. Deviations from the thermodynamical limit become negligible for about 100 or more particles, but even for a smaller number of fermions present in the well, scaling relations similar to those of the continuum approximation to the density of states are already satisfied.Comment: 7 pages REVTEX and 8 postscript figures, accepted in Phys. Rev.
    • …
    corecore