3,165 research outputs found

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Algorithms to solve the Sutherland model

    Full text link
    We give a self-contained presentation and comparison of two different algorithms to explicitly solve quantum many body models of indistinguishable particles moving on a circle and interacting with two-body potentials of 1/sin21/\sin^2-type. The first algorithm is due to Sutherland and well-known; the second one is a limiting case of a novel algorithm to solve the elliptic generalization of the Sutherland model. These two algorithms are different in several details. We show that they are equivalent, i.e., they yield the same solution and are equally simple.Comment: 15 pages, LaTe

    Hypergeometric solutions to Schr\"odinger equations for the quantum Painlev\'e equations

    Full text link
    We consider Schr\"odinger equations for the quantum Painlev\'e equations. We present hypergeometric solutions of the Schr\"odinger equations for the quantum Painlev\'e equations, as particular solutions. We also give a representation theoretic correspondence between Hamiltonians of the Schr\"odinger equations for the quantum Painlev\'e equations and those of the KZ equation or the confluent KZ equations.Comment: 17 pages; Journal of Mathematical Physics (Vol.52, Issue 8) 201

    Two-dimensional one-component plasma on a Flamm's paraboloid

    Full text link
    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Gamma=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations

    Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model

    Full text link
    In 1980 Jimbo and Miwa evaluated the diagonal two-point correlation function of the square lattice Ising model as a τ\tau-function of the sixth Painlev\'e system by constructing an associated isomonodromic system within their theory of holonomic quantum fields. More recently an alternative isomonodromy theory was constructed based on bi-orthogonal polynomials on the unit circle with regular semi-classical weights, for which the diagonal Ising correlations arise as the leading coefficient of the polynomials specialised appropriately. Here we demonstrate that the next-to-diagonal correlations of the anisotropic Ising model are evaluated as one of the elements of this isomonodromic system or essentially as the Cauchy-Hilbert transform of one of the bi-orthogonal polynomials.Comment: 11 pages, 1 figur

    Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma

    Full text link
    The two-dimensional one-component plasma (2dOCP) is a system of NN mobile particles of the same charge qq on a surface with a neutralising background. The Boltzmann factor of the 2dOCP at temperature TT can be expressed as a Vandermonde determinant to the power Γ=q2/(kBT)\Gamma=q^{2}/(k_B T). Recent advances in the theory of symmetric and anti-symmetric Jack polymonials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for NN values up to 14 and Γ\Gamma equal to 4, 6 and 8. In this work, we explore two applications of this formalism to study the moments of the pair correlation function of the 2dOCP on a sphere, and the distribution of radial linear statistics of the 2dOCP in the plane

    Applications and generalizations of Fisher-Hartwig asymptotics

    Full text link
    Fisher-Hartwig asymptotics refers to the large nn form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above TcT_c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.Comment: 25 page

    Spectral density asymptotics for Gaussian and Laguerre β\beta-ensembles in the exponentially small region

    Full text link
    The first two terms in the large NN asymptotic expansion of the β\beta moment of the characteristic polynomial for the Gaussian and Laguerre β\beta-ensembles are calculated. This is used to compute the asymptotic expansion of the spectral density in these ensembles, in the exponentially small region outside the leading support, up to terms o(1)o(1) . The leading form of the right tail of the distribution of the largest eigenvalue is given by the density in this regime. It is demonstrated that there is a scaling from this, to the right tail asymptotics for the distribution of the largest eigenvalue at the soft edge.Comment: 19 page

    New Questions on Legal Education

    Get PDF
    Periodically, Cleveland-Marshall Law Review asks prominent legal educators for their views on current problems in legal education. Here are the responses to our most recent survey. The comments are not intended to be comprehensive or definitive, but they reflect significant attitudes of outstanding scholars on important educational issues

    New Questions on Legal Education

    Get PDF
    Periodically, Cleveland-Marshall Law Review asks prominent legal educators for their views on current problems in legal education. Here are the responses to our most recent survey. The comments are not intended to be comprehensive or definitive, but they reflect significant attitudes of outstanding scholars on important educational issues
    corecore