39,783 research outputs found

    Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides

    Get PDF
    Ion migration in high repetition rate femtosecond laser inscribed waveguides is currently being reported in different optical glasses. For the first time we discuss and experimentally demonstrate the presence of two regimes of ion migration found in laser written waveguides. Regime-I, corresponds to the initial waveguide formation mainly via light element migration (in our case atomic weight < 31u), whereas regime-II majorly corresponds to the movement of heavy elements. This behavior brings attention to a problem which has never been analyzed before and that affects laser written active waveguides in which active ions migrate changing their local spectroscopic properties. The migration of active ions may in fact detune the pre-designed optimal values of active photonic devices. This paper experimentally evidences this problem and provides solutions to avert it.Comment: 4 pages, 5 figure

    The Cosmic Near Infrared Background: Remnant Light from Early Stars

    Full text link
    The redshifted ultraviolet light from early stars at z ~ 10 contributes to the cosmic near infrared background. We present detailed calculations of its spectrum with various assumptions about metallicity and mass spectrum of early stars. We show that if the near infrared background has a stellar origin, metal-free stars are not the only explanation of the excess near infrared background; stars with metals (e.g. Z=1/50 Z_sun) can produce the same amount of background intensity as the metal-free stars. We quantitatively show that the predicted average intensity at 1-2 microns is essentially determined by the efficiency of nuclear burning in stars, which is not very sensitive to metallicity. We predict \nu I_\nu / \dot{\rho}_* ~ 4-8 nW m^-2 sr^-1, where \dot{\rho_*} is the mean star formation rate at z=7-15 (in units of M_sun yr^-1 Mpc^-3) for stars more massive than 5 M_sun. On the other hand, since we have very little knowledge about the form of mass spectrum of early stars, uncertainty in the average intensity due to the mass spectrum could be large. An accurate determination of the near infrared background allows us to probe formation history of early stars, which is difficult to constrain by other means. While the star formation rate at z=7-15 inferred from the current data is significantly higher than the local rate at z<5, it does not rule out the stellar origin of the cosmic near infrared background. In addition, we show that a reasonable initial mass function, coupled with this star formation rate, does not over-produce metals in the universe in most cases, and may produce as little as less than 1 % of the metals observed in the universe today.Comment: 37 pages, 7 figures, (v2) Changes to abstract to emphasize that the excess near infrared background can solely be explained by stars with significant metals. (Metal-free stars are not necessarily needed.) (v3) Expanded discussion on the metallicity constraint. Accepted for publication in Ap

    Anomalous diffusion in correlated continuous time random walks

    Full text link
    We demonstrate that continuous time random walks in which successive waiting times are correlated by Gaussian statistics lead to anomalous diffusion with mean squared displacement ~t^{2/3}. Long-ranged correlations of the waiting times with power-law exponent alpha (0<alpha<=2) give rise to subdiffusion of the form ~t^{alpha/(1+alpha)}. In contrast correlations in the jump lengths are shown to produce superdiffusion. We show that in both cases weak ergodicity breaking occurs. Our results are in excellent agreement with simulations.Comment: 6 pages, 6 figures. Slightly revised version, accepted to J Phys A as a Fast Track Communicatio

    Phase properties of a new nonlinear coherent state

    Get PDF
    We study phase properties of a displacement operator type nonlinear coherent state. In particular we evaluate the Pegg-Barnett phase distribution and compare it with phase distributions associated with the Husimi Q function and the Wigner function. We also study number- phase squeezing of this state.Comment: 8 eps figures. to appear in J.Opt

    Dynamical complexity of discrete time regulatory networks

    Full text link
    Genetic regulatory networks are usually modeled by systems of coupled differential equations and by finite state models, better known as logical networks, are also used. In this paper we consider a class of models of regulatory networks which present both discrete and continuous aspects. Our models consist of a network of units, whose states are quantified by a continuous real variable. The state of each unit in the network evolves according to a contractive transformation chosen from a finite collection of possible transformations, according to a rule which depends on the state of the neighboring units. As a first approximation to the complete description of the dynamics of this networks we focus on a global characteristic, the dynamical complexity, related to the proliferation of distinguishable temporal behaviors. In this work we give explicit conditions under which explicit relations between the topological structure of the regulatory network, and the growth rate of the dynamical complexity can be established. We illustrate our results by means of some biologically motivated examples.Comment: 28 pages, 4 figure
    corecore