855 research outputs found

    Structural Relaxation and Frequency Dependent Specific Heat in a Supercooled Liquid

    Get PDF
    We have studied the relation between the structural relaxation and the frequency dependent thermal response or the specific heat, cp(ω)c_p(\omega), in a supercooled liquid. The Mode Coupling Theory (MCT) results are used to obtain cp(ω)c_p(\omega) corresponding to different wavevectors. Due to the two-step relaxation process present in the MCT, an extra peak, in addition to the low frequency peak, is predicted in specific heat at high frequency.Comment: 14 pages, 13 Figure

    Sublinear upper bounds for stochastic programs with recourse

    Full text link
    Separable sublinear functions are used to provide upper bounds on the recourse function of a stochastic program. The resulting problem's objective involves the inf-convolution of convex functions. A dual of this problem is formulated to obtain an implementable procedure to calculate the bound. Function evaluations for the resulting convex program only require a small number of single integrations in contrast with previous upper bounds that require a number of function evaluations that grows exponentially in the number of random variables. The sublinear bound can often be used when other suggested upper bounds are intractable. Computational results indicate that the sublinear approximation provides good, efficient bounds on the stochastic program objective value.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47918/1/10107_2005_Article_BF01582286.pd

    Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks

    Full text link
    This paper considers the nonparametric maximum likelihood estimator (MLE) for the joint distribution function of an interval censored survival time and a continuous mark variable. We provide a new explicit formula for the MLE in this problem. We use this formula and the mark specific cumulative hazard function of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This result leads to necessary and sufficient conditions for consistency of the MLE which imply that the MLE is inconsistent in general. We show that the inconsistency can be repaired by discretizing the marks. Our theoretical results are supported by simulations.Comment: 27 pages, 4 figure

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe

    Excited states of linear polyenes

    Full text link
    We present density matrix renormalisation group calculations of the Pariser- Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation. We calculate the vertical and relaxed transition energies, and relaxed geometries for various excitations on long chains. The triplet (3Bu+) and even- parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The dipole-allowed (1Bu-) state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction between the soliton-antisoliton pairs in the 2Ag+ state. The calculated excitation energies agree well with the observed values for polyene oligomers; the agreement with polyacetylene thin films is less good, and we comment on the possible sources of the discrepencies. The photoinduced absorption is interpreted. The spin-spin correlation function shows that the unpaired spins coincide with the geometrical soliton positions. We study the roles of electron-electron interactions and electron-lattice coupling in determining the excitation energies and soliton structures. The electronic interactions play the key role in determining the ground state dimerisation and the excited state transition energies.Comment: LaTeX, 15 pages, 9 figure

    Random Matrix Theory of Transition Strengths and Universal Magnetoconductance in the Strongly Localized Regime

    Full text link
    Random matrix theory of the transition strengths is applied to transport in the strongly localized regime. The crossover distribution function between the different ensembles is derived and used to predict quantitatively the {\sl universal} magnetoconductance curves in the absence and in the presence of spin-orbit scattering. These predictions are confirmed numerically.Comment: 15 pages and two figures in postscript, revte

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α−\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    Models and model value in stochastic programming

    Full text link
    Finding optimal decisions often involves the consideration of certain random or unknown parameters. A standard approach is to replace the random parameters by the expectations and to solve a deterministic mathematical program. A second approach is to consider possible future scenarios and the decision that would be best under each of these scenarios. The question then becomes how to choose among these alternatives. Both approaches may produce solutions that are far from optimal in the stochastic programming model that explicitly includes the random parameters. In this paper, we illustrate this advantage of a stochastic program model through two examples that are representative of the range of problems considered in stochastic programming. The paper focuses on the relative value of the stochastic program solution over a deterministic problem solution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44253/1/10479_2005_Article_BF02031741.pd
    • …
    corecore