149 research outputs found
Evaluation of strain and stress states in the single point incremental forming process
Single point incremental forming (SPIF) is a promising
manufacturing process suitable for small batch production.
Furthermore, the material formability is enhanced in
comparison with the conventional sheet metal forming processes,
resulting from the small plastic zone and the incremental
nature. Nevertheless, the further development of the SPIF
process requires the full understanding of the material deformation
mechanism, which is of great importance for the effective
process optimization. In this study, a comprehensive
finite element model has been developed to analyse the state
of strain and stress in the vicinity of the contact area, where the
plastic deformation increases by means of the forming tool
action. The numerical model is firstly validated with experimental
results from a simple truncated cone of AA7075-O
aluminium alloy, namely, the forming force evolution, the
final thickness and the plastic strain distributions. In order to
evaluate accurately the through-thickness gradients, the blank
is modelled with solid finite elements. The small contact area
between the forming tool and the sheet produces a negative
mean stress under the tool, postponing the ductile fracture
occurrence. On the other hand, the residual stresses in both
circumferential and meridional directions are positive in the
inner skin of the cone and negative in the outer skin. They
arise predominantly along the circumferential direction due to
the geometrical restrictions in this direction.The authors would like to gratefully acknowledge the
financial support from the Portuguese Foundation for Science and Technology
(FCT) under project PTDC/EMS-TEC/1805/2012. The first author is
also grateful to the FCT for the postdoctoral grant SFRH/BPD/101334/2014.info:eu-repo/semantics/publishedVersio
The role of emergency neurology in Italy: outcome of a consensus meeting for a intersociety position
A possible definition of clinical, educational and organizing aspects of emergency neurology in Italy is reported in this position paper of Emergency Neurology Intersociety Group, created in 2008 among the two neurological Societies in Italy: Società Italiana di Neurologia and Società di Neuroscienze Ospedaliere. The aim of this Group has been the evaluation of the role of neurologist in the emergency setting of Italian hospitals, as well as of the description of different scenarios in which a ward dedicated to a semi-intensive care of neurological emergencies could have a role in the actual organization of academic or general hospitals in our Country. The actual great relevance of neurologist activity in the inpatients treatment, in fact, is actually misleaded as it is the considerable significance of neurological expertise, techniques and support in hospital care pathways also involving neurological manifestations throughout the course of other diseases. Finally, the possible contents of educational programs orienting neurological specialty towards a better comprehension and management of emergency neurological problems either in terms of specific formation or of techniques to be learned by emergency neurologist, are reported as a results of the Consensus Workshop hold in Castiglioncello (LI) in September 12th, 2009
Hot Extrusion of Ceramics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65963/1/j.1151-2916.1992.tb07206.x.pd
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling.This research was funded by Jubiläumsfonds der Österreichischen Nationalbank, grant no.16678 (to A.R.J.), grant no. 18019 (to G.-F.V.) and Tiroler Wissenschaftsfonds, grant No. 0404/2386 (toG.-F.V.).info:eu-repo/semantics/publishedVersio
Recommended from our members
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations.
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling
Disk and Strip Forging with Side-surface Foldover—Part 1: Velocity Field and Upper-Bound Analysis
With the assumptions of a Mises’ rigid, perfectly-plastic material and constant shear stress friction prevailing between the forge platens and deforming solid, the upper-bound analysis technique was applied to the upset forging of rectangular strip and solid cylindrical disks in an effort to incorporate the combined phenomena of bluge and fold. A two-zone velocity field was proposed for each geometry with Zone I occupying the interior volume and Zone II, the region near the free-surface periphery. The velocity field in Zone I was chosen as the exponential cusp-type used successfully in several previous analyses. Zone II was represented by a velocity field compatible with a foldover phenomenon and kinematically admissible with respect to boundary conditions and compatibility with Zone I. Solutions based on the above assumptions provide the forging pressure as a function of specimen geometry, interface friction, material strength, rate of bulge formation and relative size of Zone II. Minimization with respect to the last two variables provides the optimum rate of barreling or bulging and determines the degree of foldover expected.</jats:p
An engineering analytical approach to the design of cold wire drawing processes for strain-hardening materials
- …
