34 research outputs found
Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall
Research Areas: Science & TechnologyABSTRACT - In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and
sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris
cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21g/L of reducing
sugars (p<0.001), led to an eight-fold increase in oligosaccharides release (p<0.001), and reduced
the fuorescence intensity by 47% after staining with Calcofuor White (p<0.001). The Mix treatment
was successful in releasing proteins (p<0.001), some MUFA (p<0.05), and the benefcial 18:3n-3 fatty
acid (p0.05), total carotenoids were
increased in the supernatant (p<0.05) from the Mix treatment, relative to the control. Taken together,
these results indicate that this four-enzyme Mix displays an efective capacity to degrade C. vulgaris cell
wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris
nutrients for monogastric diets, in particular, and to facilitate the cost-efective use of microalgae by
the feed industry, in general.info:eu-repo/semantics/publishedVersio
Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress
Background: Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel.
Results: There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12–14, 17, 18, 21–28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds’ response to heat stress.
Conclusions: The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the response to heat stress in chickens. Several candidate genes were identified, giving additional insight into potential mechanisms of physiologic response to high ambient temperatures
Schano, Edward Arthur
Also available as a printed booklet and from the Dean of Faculty website https://theuniversityfaculty.cornell.edu/Memorial Statement for Edward Arthur Schano, who died in 2010. The memorial statements contained herein were prepared by the Office of the Dean of the University Faculty of Cornell University to honor its faculty for their service to the university
Cole, Randall Knight
Memorial Statement for Professor Randall Knight Cole, M.S., Ph.D. (1912-2006) who was Assistant Professor (1931), Professor (1950) of Animal Breeding and Poultry Husbandry, and Emeritus Professor (1973) of Genetics in the College of Agriculture. After retirement, he continued to maintain an office in the Department of Poultry and Avian Diseases until 1996 when he transferred to the Department of Microbiology and Immunology in the College of Veterinary Medicine. "Professor Cole's major contributions to science were associated with the role of genetics in disease resistance and susceptibility." He also "taught courses in genetics of the fowl and avian anatomy and participated in teaching of the introductory course in poultry diseases." The memorial statements contained herein were prepared by the Office of the Dean of the University Faculty of Cornell University to honor its faculty for their service to the university