445 research outputs found

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review

    ErbB in NSCLC as a molecular target: Current evidences and future directions

    Get PDF
    A number of treatments have been developed for HER1, 2 and 3-driven non-small cell lung cancer (NSCLC), of which the most successful have been the epidermal growth factor receptor-tyrosine kinase inhibitors in HER1-mutant tumours resulting in highly improved progression-free survival. Human epidermal growth factor (HER)2 and 3-driven tumours represent the minority of NSCLC, and effective therapies in these patients still represent an unmet medical need. The encouraging results seen with anti-HER2 and anti-HER3 monoclonal antibodies need to be validated in larger studies, even if the greatest obstacle is represented by the exiguous number of patients bearing deregulated HER2/3 system and abnormalities of signal transduction pathway. Considering NSCLC tumour heterogeneity, which affects response and resistance to treatment, combined multiparametric approaches, such as liquid biopsy together with radiomics, may provide a better understanding of the tumour dynamics and clonal selection during the treatments

    Analysis of the antibiotic resistance profiles in methicillin-sensitive s. Aureus pathotypes isolated on a commercial rabbit farm in Italy

    Get PDF
    The breeding of meat rabbits is an important sector in the livestock industry in Italy. The focus of this study was to describe the antibiotic resistance profile distribution among the Methicillin-sensitive Staphylococcus aureus isolated in a rabbit farm. From 400 animals of different ages and three farm workers, 96 randomly selected strains isolated from various anatomical sites and lesions were analysed. According to spa typing and the resistance profiles towards veterinary and human antibiotics, 26 pathotypes were identified. The highest resistance was observed against Tetracyclines (92.3%) and Macrolides (80.8%), while almost all were susceptible to Penicillins, according to the limited use of β-lactams on the farm. In total, 92.3% of pathotypes were multidrug resistant (MDRs). Two MDR pathotypes belonging to the t2802 spa type were isolated from both farmers and rabbits. Age categories harboured significantly different pathotypes (p = 0.019), while no association was found between pathotypes and lesions (p = 0.128) or sampling sites (p = 0.491). The antibiotic resistance was observed to increase with the time spent in the farm environment (age category). The selective pressure exerted by antibiotic use acted by giving advantage to more resistant strains rather than by lowering susceptibility to various drug categories within strains

    A high rate silicon detector and front-end electronics prototype for single ion discrimination in particle therapy

    Get PDF
    none18noThe medical physics group of the Turin section of the National Institute of Nuclear Physics, on the behalf of the MoVeIT collaboration, is working for the development of a new prototype of silicon strip detector for particle therapy applications. This device, based on 50 μm thin silicon sensors with internal gain, aims to detect the single beam particle and count their number up to 10 8 cm 2 /s fluxes, with a pileup probability <; 1%. A similar approach would lead to a drastic step forward, compared to the classical and widely used monitoring system based on ionization chambers. The better sensitivity, the higher dynamic range and the fact that the particle counting is independent of the beam energy, pressure and temperature, make this silicon detector suitable for the on-line dose monitoring in particle therapy applications. The prototype detector will cover a 3×3 cm 2 area and at the moment, two sets of strip sensors with different geometry and custom design, have been produced and are currently under investigation. The classic orthogonal strip positioning is used for beam profile measures. For what concerns the front-end electronics, the design of two different solutions is ongoing: one based on a transimpedance preamplifier, with a resistive feedback and the second one based on a charge sensitive amplifier. The challenging task for the design is the expected 3 fC - 130 fC wide input charge range (due to the Landau fluctuation spreading and different beam energies), dealing with a hundreds of MHz instantaneous rate (from 200 MHz up to 500 MHz ideally). To effectively design these components, it is crucial to perform preliminary investigation of the sensor response to the expected stimuli. For this reason an extensive work has been done and is still on going, using 1.2 mm 2 area and 50μm silicon pads with gain, performing test with the clinical beam of the Italian National Center of Oncological Hadrontherapy (CNAO) in Pavia, Italy.noneFausti, F.; Arcidiacono, R.; Attili, A.; Cartiglia, N.; Cenna, F.; Donetti, M.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Monaco, V.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Vignati, A.; Cirio, R.Fausti, F.; Arcidiacono, R.; Attili, A.; Cartiglia, N.; Cenna, F.; Donetti, M.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Monaco, V.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Vignati, A.; Cirio, R

    Test of innovative silicon detectors for the monitoring of a therapeutic proton beam

    Get PDF
    Beam monitoring in particle therapy is a critical task that, because of the high flux and the time structure of the beam, can be challenging for the instrumentation. Recent developments in thin silicon detectors with moderate internal gain, optimized for timing applications (Ultra Fast Silicon Detectors, UFSD), offer a favourable technological option to conventional ionization chambers. Thanks to their fast collection time and good signal-to-noise ratio, properly segmented sensors allow discriminating and counting single protons up to the high fluxes of a therapeutic beam, while the excellent time resolution can be exploited for measuring the proton beam energy using time-of-flight techniques. We report here the results of the first tests performed with UFSD detector pads on a therapeutic beam. It is found that the signal of protons can be easily discriminated from the noise, and that the very good time resolution is confirmed. However, a careful design is necessary to limit large pile-up inefficiencies and early performance degradation due to radiation damage
    corecore