11 research outputs found

    Processing of coconut sap into sugar syrup using rotary evaporation, microwave and open-heat evaporation techniques

    Get PDF
    Background: Coconut sugar has a caramel color with a taste like brown sugar. It is commonly used as natural sweetener. However, coconut sugar has been produced from coconut sap using a traditional method that involves heating the sap at high temperature (>100 °C) in an open pan for a long period (3–5 h). This conventional method results in an over-cooked sugar, which leads to quality deterioration in terms of both its physical and chemical properties. The current study aimed to investigate the processing of coconut sap into sugar syrup using alternative processing techniques such as rotary vacuum evaporation (RE) and microwave evaporation (ME), comparing them with open-heat evaporation (OHE) technique. Results: Coconut sugar syrup produced by rotary evaporation at 60 °C and 250 mbar vacuum (RE-60) required the shortest production time (12.2 min) and the lowest processing temperature (54.8 °C) when compared with ME (13 min and 103.2 °C) and OHE (46.8 min and 101.6 °C). It also had a light brownish color with a higher L* value (35.17) than the ME (29.84) and OHE (23.84) methods. It was found to contain higher amounts of monosaccharides (fructose and glucose) and lower amounts of disaccharides (sucrose). Furthermore, the amount of energy required for RE-60 (0.35 kWh) was much less than for OHE (0.83 kWh). Conclusion: This study provided an alternative processing method for the sugar processing industry to produce coconut sugar using the rotary evaporation method at 60 °C under 250 mbar vacuum with better physicochemical qualities, shorter processing time, and minimum input energy

    Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease

    No full text
    The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson’s disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease

    Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease

    Get PDF
    The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson's disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease
    corecore