476 research outputs found

    Age-related decline of de novo T cell responsiveness as a cause of COVID-19 severity

    Get PDF
    To the Editor, So far, little attention has been paid to the link between immunosenescence and the dramatic mortality rate of coronavirus disease 2019 (COVID-19) in older age groups. Indeed, the number of cases of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is very low among children and teenagers, in contrast to the increased frequency in adults and the elderly, who are also more at risk of developing very serious symptoms and death (Guan et al. 2020; Wu and McGoogan 2020). As shown in Fig. 1, a similar epidemiological profile was observed during previous coronavirus (severe acute respiratory syndrome coronavirus 1, SARS-CoV-1, and Middle east respiratory syndrome coronavirus, MERS-CoV) outbreaks (Jia et al. 2009; Salamatbakhsh et al. 2019). Notably, the same trend was also noted during West Nile virus and, with some exceptions in very young children, Ebolavirus outbreaks (Bower et al. 2016; Hayes et al. 2005). Likely this phenomenon is multifactorial. For instance, in elderly individuals with severe COVID-19, associated comorbidities are much more prevalent (Guan et al. 2020). In addition, the progressive accumulation of senescent cells during life may play a role in the vulnerability of old people to COVID-19, resulting in reduced functionality of the organs, such as the lungs, and facilitating conditions for the development of fibrosis. Moreover, senescent cells can generate a pro-inflammatory environment, referred to as SASP (for senescence-associated secretory phenotype), which includes many inflammatory cytokines (e.g., interleukin-6) and contributes to the basal hyperinflammatory status characteristic of the old person. This hyperinflammatory status might influence the expression of ACE2, CD147, cyclophilins, CD26, and other CoV-associated molecules in human tissues, thus favoring viral entry (Radzikowska et al. 2020). It likely also constitutes an already unbalanced pro-inflammatory background, on which the development of an exacerbated inflammatory response and acute respiratory distress syndrome may be facilitated upon SARS-CoV-2 infection

    Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size

    Get PDF
    Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging

    NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system

    Get PDF
    Human aging is characterized by changes in the immune system which have a profound impact on the T-cell compartment. These changes are more frequently found in CD8+ T cells, and there are not well-defined markers of differentiation in the CD4+ subset. Typical features of cell immunosenescence are characteristics of pathologies in which the aberrant expression of NKG2D in CD4+ T cells has been described. To evaluate a possible age-related expression of NKG2D in CD4+ T cells, we compared their percentage in peripheral blood from 100 elderly and 50 young adults. The median percentage of CD4+ NKG2D+ in elders was 5.3% (interquartile range (IR): 8.74%) versus 1.4% (IR: 1.7%) in young subjects (p < 0.3 × 10−10). CD28 expression distinguished two subsets of CD4+ NKG2D+ cells with distinct functional properties and differentiation status. CD28+ cells showed an immature phenotype associated with high frequencies of CD45RA and CD31. However, most of the NKG2D+ cells belonged to the CD28null compartment and shared their phenotypical properties. NKG2D+ cells represented a more advanced stage of maturation and exhibited greater response to CMV (5.3 ± 3.1% versus 3.4 ± 2%, p = 0.037), higher production of IFN-γ (40.56 ± 13.7% versus 24 ± 8.8%, p = 0.015), lower activation threshold and reduced TREC content. Moreover, the frequency of the CD4+ NKG2D+ subset was clearly related to the status of the T cells. Higher frequencies of the NKG2D+ subset were accompanied with a gradual decrease of NAIVE and central memory cells, but also with a higher level of more differentiated subsets of CD4+ T cells. In conclusion, CD4+ NKG2D+ represent a subset of highly differentiated T cells which characterizes the senescence of the immune system

    Ginger extract inhibits LPS induced macrophage activation and function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation.</p> <p>Methods</p> <p>Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction.</p> <p>Results</p> <p>We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines) and RANTES, MCP-1 (pro inflammatory chemokines) production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed.</p> <p>Conclusion</p> <p>In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.</p

    Timely HAART initiation may pave the way for a better viral control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When to initiate antiretroviral therapy in HIV infected patients is a diffcult clinical decision. Actually, it is still a matter of discussion whether early highly active antiretroviral therapy (HAART) during primary HIV infection may influence the dynamics of the viral rebound, in case of therapy interruption, and overall the main disease course.</p> <p>Methods</p> <p>In this article we use a computational model and clinical data to identify the role of HAART timing on the residual capability to control HIV rebound after treatment suspension. Analyses of clinical data from three groups of patients initiating HAART respectively before seroconversion (very early), during the acute phase (early) and in the chronic phase (late), evidence differences arising from the very early events of the viral infection.</p> <p>Results</p> <p>The computational model allows a fine grain assessment of the impact of HAART timing on the disease outcome, from acute to chronic HIV-1 infection. Both patients' data and computer simulations reveal that HAART timing may indeed affect the HIV control capability after treatment discontinuation. In particular, we find a median time to viral rebound that is significantly longer in very early than in late patients.</p> <p>Conclusions</p> <p>A timing threshold is identified, corresponding to approximately three weeks post-infection, after which the capability to control HIV replication is lost. Conversely, HAART initiation occurring within three weeks from the infection could allow to preserve a significant control capability. This time could be related to the global triggering of uncontrolled immune activation, affecting residual immune competence preservation and HIV reservoir establishment.</p

    Lymphocyte and monocyte flow cytometry immunophenotyping as a diagnostic tool in uncharacteristic inflammatory disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with uncharacteristic inflammatory symptoms such as long-standing fatigue or pain, or a prolonged fever, constitute a diagnostic and therapeutic challenge. The aim of the present study was to determine if an extended immunophenotyping of lymphocytes and monocytes including activation markers can define disease-specific patterns, and thus provide valuable diagnostic information for these patients.</p> <p>Methods</p> <p>Whole blood from patients with gram-negative bacteraemia, neuroborreliosis, tuberculosis, acute mononucleosis, influenza or a mixed connective tissue disorders, as diagnosed by routine culture and serology techniques was analysed for lymphocyte and monocyte cell surface markers using a no-wash, no-lyse protocol for multi-colour flow cytometry method. The immunophenotyping included the activation markers HLA-DR and CD40. Plasma levels of soluble TNF alpha receptors were analysed by ELISA.</p> <p>Results</p> <p>An informative pattern was obtained by combining two of the analysed parameters: (i), the fractions of HLA-DR-expressing CD4+ T cells and CD8+ T cells, respectively, and (ii), the level of CD40 on CD14+ CD16- monocytes. Patients infected with gram-negative bacteria or EBV showed a marked increase in monocyte CD40, while this effect was less pronounced for tuberculosis, borrelia and influenza. The bacterial agents could be distinguished from the viral agents by the T cell result; CD4+ T cells reacting in bacterial infection, and the CD8+ T cells dominating for the viruses. Patients with mixed connective tissue disorders also showed increased activation, but with similar engagement of CD4+ and CD8+ T cells. Analysis of soluble TNF alpha receptors was less informative due to a large inter-individual variation.</p> <p>Conclusion</p> <p>Immunophenotyping including the combination of the fractions of HLA-DR expressing T cell subpopulations with the level of CD40 on monocytes produces an informative pattern, differentiating between infections of bacterial and viral origin. Furthermore, a quantitative analysis of these parameters revealed the novel finding of characteristic patterns indicating a subacute bacterial infection, such as borreliosis or tuberculosis, or a mixed connective tissue disorder. The employed flow cytometric method is suitable for clinical diagnostic laboratories, and may help in the assessment of patients with uncharacteristic inflammatory symptoms.</p

    Long-term clinical, immunologic and virologic impact of glucocorticoids on the chronic phase of HIV infection

    Get PDF
    BACKGROUND: To test the hypothesis of down-regulating the increased immune system activation/destruction process associated with chronic HIV infection, we focused our interest on prednisolone (PDN), because we had showed that, in vitro, PDN had a strong anti-apoptotic activity on activated T cells of HIV-infected patients and no effect on viral replication. We thus designed in 1992 a pilot study to evaluate the clinical, immunologic and virologic effects of PDN. The drug was given to a group of 44 patients with CD4 T cells over 200/μl. After one year, no patient had developed clinical AIDS and the mean CD4 T cell count of the group had increased from 441 ± 21 cells/μl to 553 ± 43 cells/μl. Moreover, markers of immune activation had dropped back to normal levels while the mean viral load of the group had remained unchanged. Here we explore the long-term clinical, immunologic, and virologic impact of prednisolone on the chronic phase of HIV infection. METHODS: Retrospective study over 10 years starting between July 1992 and February 1993. A total of 44 patients with CD4 cells/μl ranging from 207 to 775 were treated with prednisolone, 0.5 mg/kg/d, over 6 months and 0.3 mg/kg/d thereafter. RESULTS: No clinical AIDS developed under prednisolone; side effects of the drug were mild. CD4 cells which increased from 421 cells/μl at entry to 625 cells/μl at day 15, slowly decreased to reach 426 cells/μl after two years; T cell apoptosis and activation markers dropped within 15 days to normal levels and reincreased slowly thereafter. Serum viral loads remained stable. The percentage of patients maintaining CD4 cells over entry was 43.2% at two years, 11.4% at five years and 4.6% at 10 years. Initial viral load was highly predictive of the rate of CD4 decrease under prednisolone. CONCLUSIONS: Prednisolone postponed CD4 cell decrease in a viral load dependent manner for a median of two years and for up to 10 years in a fraction of the patients with a low viral load. These findings might stimulate clinical trials as well as biological research on the role of antiapoptotic drugs in HIV infection

    Impact of HIV on CD8+ T Cell CD57 Expression Is Distinct from That of CMV and Aging

    Get PDF
    Background: Chronic antigenic stimulation by cytomegalovirus (CMV) is thought to increase ‘‘immunosenesence’’ of aging, characterized by accumulation of terminally differentiated CD28- CD8+ T cells and increased CD57, a marker of proliferative history. Whether chronic HIV infection causes similar effects is currently unclear. Methods: We compared markers of CD8+ T cell differentiation (e.g., CD28, CD27, CCR7, CD45RA) and CD57 expression on CD28- CD8+ T cells in healthy HIV-uninfected adults with and without CMV infection and in both untreated and antiretroviral therapy (ART)-suppressed HIV-infected adults with asymptomatic CMV infection. Results: Compared to HIV-uninfected adults without CMV (n = 12), those with asymptomatic CMV infection (n = 31) had a higher proportion of CD28-CD8+ T cells expressing CD57 (P = 0.005). Older age was also associated with greater proportions of CD28-CD8+ T cells expressing CD57 (rho: 0.47, P = 0.007). In contrast, untreated HIV-infected CMV+ participants (n = 55) had much lower proportions of CD28- CD8+ cells expressing CD57 than HIV-uninfected CMV+ participants (P,0.0001) and were enriched for less well-differentiated CD28- transitional memory (TTR) CD8+ T cells (P,0.0001). Chronically HIV-infected adults maintaining ART-mediated viral suppression (n = 96) had higher proportions of CD28-CD8+ T cells expressing CD57 than untreated patients (P,0.0001), but continued to have significantly lower levels than HIV-uninfected controls (P = 0.001). Among 45 HIV-infected individuals initiating their first ART regimen, the proportion of CD28-CD8+ T cells expressing CD57 declined (P,0.0001), which correlated with a decline in percent of transitional memory CD8+ T cells, and appeared to be largely explained by a decline in CD28-CD57- CD8+ T cell counts rather than an expansion of CD28-CD57+ CD8+ T cell counts. Conclusions: Unlike CMV and aging, which are associated with terminal differentiation and proliferation of effector memory CD8+ T cells, HIV inhibits this process, expanding less well-differentiated CD28- CD8+ T cells and decreasing the proportion of CD28- CD8+ T cells that express CD57

    Surface Phenotype and Functionality of WNV Specific T Cells Differ with Age and Disease Severity

    Get PDF
    West Nile virus (WNV) infection can result in severe neuroinvasive disease, particularly in persons with advanced age. As rodent models demonstrate that T cells play an important role in limiting WNV infection, and strong T cell responses to WNV have been observed in humans, we postulated that inadequate antiviral T cell immunity was involved in neurologic sequelae and the more severe outcomes associated with age. We previously reported the discovery of six HLA-A*0201 restricted WNV peptide epitopes, with the dominant T cell targets in naturally infected individuals being SVG9 (Env) and SLF9 (NS4b). Here, memory phenotype and polyfunctional CD8+ T cell responses to these dominant epitopes were assessed in 40 WNV seropositive patients displaying diverse clinical symptoms. The patients' PBMC were stained with HLA-I multimers loaded with the SVG9 and SLF9 epitopes and analyzed by multicolor flow cytometry. WNV-specific CD8+ T cells were found in peripheral blood several months post infection. The number of WNV-specific T cells in older individuals was the same, if not greater, than in younger members of the cohort. WNV-specific T cells were predominantly monofunctional for CD107a, MIP-1β, TNFα, IL-2, or IFNγ. When CD8+ T cell responses were stratified by disease severity, an increased number of terminally differentiated, memory phenotype (CD45RA+ CD27− CCR7− CD57+) T cells were detected in patients suffering from viral neuroinvasion. In conclusion, T cells of a terminally differentiated/cytolytic profile are associated with neuroinvasion and, regardless of age, monofunctional T cells persist following infection. These data provide the first indication that particular CD8+ T cell phenotypes are associated with disease outcome following WNV infection
    • …
    corecore