232 research outputs found

    Multiscale analysis of phonon mediated dissipation in crystalline solids

    Get PDF
    In this study, we develop a multiscale method to study intrinsic damping in nano-structure. Vibrational frequencies in the range of few GHz are considered. Deformation of the structure, at such high rates of vibration, results in a nonequilibrium phonon distribution. The condition of local equilibrium, as is often used in the existing mutli-scale approaches, no longer remains valid. The nonequilibrium phonon population results in the absorption of energy from the mechanical deformation and manifests itself as macroscopic dissipation. In this study, we develop constitutive relation for the stress tensor under such nonequilibrium condition. The stress tensor is decomposed into equilibrium and nonequilibrium components. The equilibrium component of the stress tensor is obtained using finite temperature quasi-harmonic methods (QHM). A visco-elastic relation is obtained for the nonequilibrium component. The different parameters, for the developed constitutive law, are obtained from the underlying interatomic potential. A modified QHM approach is used to obtain the stress relaxation rate. We first consider the case of ideal crystalline solids and study dissipation rate as a function of frequency and different strain state. Dissipation rate is computed in terms of dimensionless Q factor. The results from the analyses are compared with those obtained from nonequilibrium molecular dynamics simulations. The case of nano-structure is, then, considered. The role of surface on the Q factor is studied and compared with atomistic results

    A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties

    Get PDF
    This work proposes a domain adaptive stochastic collocation approach for uncertainty quantification, suitable for effective handling of discontinuities or sharp variations in the random domain. The basic idea of the proposed methodology is to adaptively decompose the random domain into subdomains. Within each subdomain, a sparse grid interpolant is constructed using the classical Smolyak construction [S. Smolyak, Quadrature and interpo- lation formulas for tensor products of certain classes of functions, Soviet Math. Dokl. 4 (1963) 240–243], to approximate the stochastic solution locally. The adaptive strategy is governed by the hierarchical surpluses, which are computed as part of the interpolation procedure. These hierarchical surpluses then serve as an error indicator for each subdo- main, and lead to subdivision whenever it becomes greater than a threshold value. The hierarchical surpluses also provide information about the more important dimensions, and accordingly the random elements can be split along those dimensions. The proposed adaptive approach is employed to quantify the effect of uncertainty in input parameters on the performance of micro-electromechanical systems (MEMS). Specifically, we study the effect of uncertain material properties and geometrical parameters on the pull-in behavior and actuation properties of a MEMS switch. Using the adaptive approach, we resolve the pull-in instability in MEMS switches. The results from the proposed approach are verified using Monte Carlo simulations and it is demonstrated that it computes the required statistics effectively

    Genetic Modification of Low Phytic Acid 1-1 Maize to Enhance Iron Content and Bioavailability

    Get PDF
    High phytate content in staple food crops is a major barrier to successful iron biofortification. We have exploited the low phytic acid 1-1 (lpa1-1) mutant of maize to generate transgenic plants with up-to 70 ÎĽg/g seed iron through the endosperm-specific overexpression of soybean ferritin, resulting in more than 2-fold improvement in iron bioavailability. The levels of bioavailable seed iron achieved in this study greatly exceed any achieved thus far and closely approach values estimated to have a nutritional impact on target populations. Gene expression studies reveal a large induction of the YS1 transporter in leaves and severe repression of an iron acquisition gene DMAS1 in roots, suggesting significant alterations in the iron homeostatic mechanisms in transgenic lpa1-1. Furthermore, preliminary tests show that the high-iron lpa1-1 seeds have higher germination rates and seedling vigor when compared to those of the nontransgenic seeds, which may help improve their value to plant breeders

    Novel Mannich bases bearing pyrazolone moiety. Synthesis, characterization and electrochemical studies

    Get PDF
    The present investigation describes a series of new {4-[3-Methyl-5-oxo-4-(4|-substituted phenyl hydrazono)-4,5-dihydro-pyrazol-1-yl]-phenoxy}-acetic acid (2-oxo-1-piperidine-1-ylmethyl-1,2-dihydro–indol-3-ylidene)-hydrazides synthesized by the Mannich reaction of {4-[3-Methyl-5-oxo-4-(4|-substituted phenyl hydrazono)-4,5-dihydro-pyrazol-1-yl]-phenoxy}-acetic acid (2-oxo-1,2-dihydro-indol-3-ylidene)-hydrazide with aqueous formaldehyde and a solution of piperidine in dimethylformamide. These novel Mannich bases were characterized by elemental analysis, IR, 1H NMR and mass spectral data. Electrochemical behavior of these compounds were studied by two techniques namely polarography and cyclic voltammetry. The results from both the techniques were compared and the reduction mechanism in acidic as well as basic medium was proposed

    Haze-Assisted Confidentiality Conserving Mobile Health Monitoring

    Get PDF
    Haze-assisted mobile health (mHealth) monitoring, which applies the prevailing mobile communications and Haze computing technologies to provide feedback decision support, has been considered as a revolutionary approach to improving the quality of healthcare service while lowering the healthcare cost. Unfortunately, it  also  poses  a  serious  risk  on  both  clients Confidentiality and intellectual property of monitoring service providers, which could deter the wide adoption of mHealth technology. This paper is to address this important problem and design a Hazeassisted Confidentiality Conserving mobile health monitoring system to protect the Confidentiality of the involved parties and their data. Moreover, the outsourcing decryption technique and a newly proposed key private proxy re-encryption are adapted to shift the computational complexity of the involved parties to the Haze without compromising clients’ Confidentiality and service providers’ intellectual property. Finally, our security and performance analysis demonstrates the effectiveness of our proposed design

    Image similarity in medical images

    Get PDF
    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al
    • …
    corecore