62 research outputs found
Comparison of Bond Character in Hydrocarbons and Fullerenes
We present a comparison of the bond polarizabilities for carbon-carbon bonds
in hydrocarbons and fullerenes, using two different models for the fullerene
Raman spectrum and the results of Raman measurements on ethane and ethylene. We
find that the polarizabilities for single bonds in fullerenes and hydrocarbons
compare well, while the double bonds in fullerenes have greater polarizability
than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.
The strain energy and Young's Moduli of single-wall Carbon nanotubules calculated from the electronic energy-band theory
The strain energies in straight and bent single-walled carbon nanotubes
(SWNTs) are calculated by taking account of the total energy of all the
occupied band electrons. The obtained results are in good agreement with
previous theoretical studies and experimental observations. The Young's modulus
and the effective wall thickness of SWNT are obtained from the bending strain
energies of SWNTs with various cross-sectional radii. The repulsion potential
between ions contributes the main part of the Young's modulus of SWNT.
The wall thickness of SWNT comes completely from the overlap of electronic
orbits, and is approximately of the extension of
orbit of carbon atom. Both the Young's modulus and the wall thickness
are independent of the radius and the helicity of SWNT, and insensitive to the
fitting parameters.
The results show that continuum elasticity theory can serve well to describe
the mechanical properties of SWNTs.Comment: 12 pages, 2 figure
Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca
In this letter we report the discovery of superconductivity in the
isostructural graphite intercalation compounds C6Yb and C6Ca, with transition
temperatures of 6.5K and 11.5K respectively. A structural characterisation of
these compounds shows them to be hexagonal layered systems in the same class as
other graphite intercalates. If we assume that all the outer s-electrons are
transferred from the intercalant to the graphite sheets, then the charge
transfer in these compounds is comparable to other superconducting graphite
intercalants such as C8K 1,2 . However, the superconducting transition
temperatures of C6Yb and C6Ca are up to two orders of magnitude greater.
Interestingly, superconducting upper critical field studies and resistivity
measurements suggest that these compounds are significantly more isotropic than
pure graphite. This is unexpected as the effect of introducing the intercalant
is to move the graphite layer further apart.Comment: 2 Figures. Please see accompanying theoretical manuscript,
"Electronic Structure of the Superconducting Graphite Intercalates" by Csanyi
et al., cond-mat/050356
Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state
Although not an intrinsic superconductor, it has been long--known that, when
intercalated with certain dopants, graphite is capable of exhibiting
superconductivity. Of the family of graphite--based materials which are known
to superconduct, perhaps the most well--studied are the alkali metal--graphite
intercalation compounds (GIC) and, of these, the most easily fabricated is the
CK system which exhibits a transition temperature K. By increasing the alkali metal concentration (through high pressure
fabrication techniques), the transition temperature has been shown to increase
to as much as K in CNa. Lately, in an important recent
development, Weller \emph{et al.} have shown that, at ambient conditions, the
intercalated compounds \cyb and \cca exhibit superconductivity with transition
temperatures K and K respectively, in excess
of that presently reported for other graphite--based compounds. We explore the
architecture of the states near the Fermi level and identify characteristics of
the electronic band structure generic to GICs. As expected, we find that charge
transfer from the intercalant atoms to the graphene sheets results in the
occupation of the --bands. Yet, remarkably, in all those -- and only
those -- compounds that superconduct, we find that an interlayer state, which
is well separated from the carbon sheets, also becomes occupied. We show that
the energy of the interlayer band is controlled by a combination of its
occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript
"Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by
Weller et a
Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite
The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic
graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at
6K. The observed spectral features are in very good agreement with the
vibrational density of states (vDOS) of graphite calculated from first
principles. We discuss the enhancement of certain phonon modes by
phonon-assisted tunneling in STS based on the restrictions imposed by the
electronic structure of graphite. We also demonstrate for the first time the
local excitation of surface-plasmons in IETS which are detected at an energy of
40 meV.Comment: PRB rapid communication, submitte
Frequency and clinical patterns of stroke in Iran - Systematic and critical review
<p>Abstract</p> <p>Background</p> <p>Cerebrovascular disease is the second commonest cause of death, and over a third of stroke deaths occur in developing countries. To fulfil the current gap on data, this systematic review is focused on the frequency of stroke, risk factors, stroke types and mortality in Iran.</p> <p>Methods</p> <p>Thirteen relevant articles were identified by keyword searching of PubMed, Iranmedex, Iranian University index Libraries and the official national data on burden of diseases.</p> <p>Results</p> <p>The publication dates ranged from 1990 to 2008. The annual stroke incidence of various ages ranged from 23 to 103 per 100,000 population. This is comparable to the figures from Arab Countries, higher than sub-Saharan Africa, but lower than developed countries, India, the Caribbean, Latin America, and China. Similarly to other countries, ischaemic stroke was the commonest subtype. Likewise, the most common related risk factor is hypertension in adults, but cardiac causes in young stroke. The 28-day case fatality rate is reported at 19-31%.</p> <p>Conclusions</p> <p>Data on the epidemiology of stroke, its pattern and risk factors from Iran is scarce, but the available data highlights relatively low incidence of stroke. This may reflect a similarity towards the neighbouring nations, and a contrast with the West.</p
Genetic Variants and Protective Immunity against SARS-CoV-2
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study
- …