5,843 research outputs found

    Land Use-Transportation Interaction: Lessons Learned from an Experimental Model using Cellular Automata and Artificial Neural Networks

    Get PDF
    Land use and transportation interact to produce large urban concentrations in most major cities that create tremendous sprawl, noise, congestion, and environmental concerns. The desire to better understand this relationship has led to the development of land use–transport (LUT) models as an extension of more general urban models. The difficulties encountered in developing such models are many as local actions sum to form global patterns of land use change, producing complex interrelationships. Cellular automata (CA) simplify LUT model structure, promise resolution improvement, and effectively handle the dynamics of emergent growth. Artificial Neural Networks (ANN) can be used to quantify the complex relationships present in historical land use data as a means of calibrating a CA-LUT model. This study uses an ANN, slope, historical land use, and road data to calibrate a CA-LUT model for the I-140 corridor of Knoxville, TN. The resulting model was found to require a complex ANN, produce realistic emergent growth patterns, and shows promising simulation performance in several significant land classes such as single-family residential. Problems were encountered as the model was iterated due to the lack of a mechanism to extend the road network. The presence of local roads in the model’s configuration strengthened ability of the model to simulate historical development patterns. Shortcomings in certain aspects of the simulation performance point to the need for the addition of a socio-economic sub-model to assess demand for urban area and/or an equilibrium mechanism to arbitrate the supply of developable land. The model constructed in this study was found to hold considerable potential for local-scale simulation and scenario testing given suitable modification to its structure and input parameters

    Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    Get PDF
    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process

    Motivations and experiences of UK students studying abroad

    Get PDF
    This report summarises the findings of research aimed at improving understanding of the motivations behind the international diploma mobility of UK student

    Exact ground states of quantum spin-2 models on the hexagonal lattice

    Full text link
    We construct exact non-trivial ground states of spin-2 quantum antiferromagnets on the hexagonal lattice. Using the optimum ground state approach we determine the ground state in different subspaces of a general spin-2 Hamiltonian consistent with some realistic symmetries. These states, which are not of simple product form, depend on two free parameters and can be shown to be only weakly degenerate. We find ground states with different types of magnetic order, i.e. a weak antiferromagnet with finite sublattice magnetization and a weak ferromagnet with ferrimagnetic order. For the latter it is argued that a quantum phase transition occurs within the solvable subspace.Comment: 7 pages, accepted for publication in Phys. Rev.

    Black Holes at the IceCube Neutrino Telescope

    Full text link
    If the fundamental Planck scale is about a TeV and the cosmic neutrino flux is at the Waxman-Bahcall level, quantum black holes are created daily in the Antarctic ice-cap. We re-examine the prospects for observing such black holes with the IceCube neutrino-detection experiment. To this end, we first revise the black hole production rate by incorporating the effects of inelasticty, i.e., the energy radiated in gravitational waves by the multipole moments of the incoming shock waves. After that we study in detail the process of Hawking evaporation accounting for the black hole's large momentum in the lab system. We derive the energy spectrum of the Planckian cloud which is swept forward with a large, O (10^6), Lorentz factor. (It is noteworthy that the boosted thermal spectrum is also relevant for the study of near-extremal supersymmetric black holes, which could be copiously produced at the LHC.) In the semiclassical regime, we estimate the average energy of the boosted particles to be less than 20% the energy of the neutrino-progenitor. Armed with such a constraint, we determine the discovery reach of IceCube by tagging on "soft" (relative to what one would expect from charged current standard model processes) muons escaping the electromagnetic shower bubble produced by the black hole's light descendants. The statistically significant 5-sigma excess extends up to a quantum gravity scale ~ 1.3 TeV.Comment: Matching version to be published in Phys. Rev.

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    The crystal structure of calcite III

    Get PDF
    The crystal structure of calcite III has been deduced from existing high pressure powder X-ray diffraction patterns, based on the assumption that it is a displacive modification of the calcite I structure. The structure is monoclinic with space group C2 and a Z of 6. There are two Ca and two C positions, and five O positions, and atom coordinates have been refined by distance-least-squares methods to give reasonable octahedral coordination for Ca and parallel, planar CO_3 groups. Unit cell parameters refined from a published powder diffraction pattern at 4.1 GPa are: a = 8.746(8)Å; b = 4.685(5)Å; c = 8.275(8)Å; and β= 94.4°. The structure has a calculated density of 2.949 Mg/m³ at 4.1 GPa which is less than that of aragonite at this pressure and consistent with early piston cylinder studies. This implies that calcite III is indeed a metastable intermediary between calcite I and aragonite

    Temperatures of shock-induced shear instabilities and their relationship to fusion curves

    Get PDF
    New emission spectra for MgO and CaAl_2Si_2O_8 (glass) are observed from 430 to 820 nm. Taken with previous data, we suggest that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl_2Si_2O_8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO_2, CaO, CaAl_2Si_2O_8, and Mg_2SiO_4. The onset of regime (2) may delineate the onset of shock-induced polymorphism whereas the onset of regime (3) delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. We also propose that the hot spot temperatures and corresponding shock pressures determined in regime (2) delineate points on the fusion curves of the high pressure phase
    • …
    corecore