2,005 research outputs found

    Processing of DMSP magnetic data: Handbook of programs, tapes, and datasets

    Get PDF
    The DMSP F-7 satellite was an operational Air Force meteorological satellite which carried a magnetometer for geophysical measurements. The magnetometer was located within the body of the spacecraft in the presence of large spacecraft fields. In addition to stray magnetic fields, the data have inherent position and time inaccuracies. Algorithms were developed to identify and remove time varying magnetic field noise from the data. These algorithms are embodied in an automated procedure which fits a smooth curve through the data and then identifies outliers and which filters the predominant Fourier component of noise from the data. Techniques developed for Magsat were then modified and used to attempt determination of the spacecraft fields, of any rotation between the magnetometer axes and the spacecraft axes, and of any scale changes within the magnetometer itself. Software setup and usage are documented and program listings are included in the Appendix. The initial and resulting data are archived on magnetic cartridge and the formats are documented

    Topological Optimization of the Evaluation of Finite Element Matrices

    Full text link
    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC

    Static Black Hole Solutions without Rotational Symmetry

    Full text link
    We construct static black hole solutions that have no rotational symmetry. These arise in theories, including the standard electroweak model, that include charged vector mesons with mass m≠0m\ne 0. In such theories, a magnetically charged Reissner-Nordstrom black hole with horizon radius less than a critical value of the order of m−1m^{-1} is classically unstable against the development of a nonzero vector meson field just outside the horizon, indicating the existence of static black hole solutions with vector meson hair. For the case of unit magnetic charge, spherically symmetric solutions of this type have previously been studied. For other values of the magnetic charge, general arguments show that any new solution with hair cannot be spherically symmetric. In this paper we develop and apply a perturbative scheme (which may have applicability in other contexts) for constructing such solutions in the case where the Reissner-Nordstrom solution is just barely unstable. For a few low values of the magnetic charge the black holes retain a rotational symmetry about a single axis, but this axial symmetry disappears for higher charges. While the vector meson fields vanish exponentially fast at distances greater than O(m−1)O(m^{-1}), the magnetic field and the metric have higher multipole components that decrease only as powers of the distance from the black hole.Comment: 42 pages, phyzzx. 4 figures (PostScript, 1.7 MB when uncompressed) available by email from the Authors on reques

    Ferromagnetic Ga₁ˍₓ Mnₓ As produced by ion implantation and pulsed-laser melting

    Get PDF
    We demonstrate the formation of ferromagneticGa₁ˍₓMnₓAsfilms by Mn ion implantation into GaAs followed by pulsed-laser melting. Irradiation with a single excimer laser pulse results in the epitaxial regrowth of the implanted layer with Mn substitutional fraction up to 80% and effective Curie temperature up to 29 K for samples with a maximum Mn concentration of x≈0.03. A remanent magnetization persisting above 85 K has been observed for samples with x≈0.10, in which 40% of the Mn resides on substitutional lattice sites. We find that the ferromagnetism in Ga₁ˍₓMnₓAs is rather robust to the presence of structural defects.The work at the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The work at Harvard was supported by NASA Grant No. NAG8-1680. One of the authors ~M.A.S.! acknowledges support from an NSF Graduate Research Fellowship

    High-Resolution Infrared Spectroscopy of the Brown Dwarf Epsilon Indi Ba

    Full text link
    We report on the analysis of high-resolution infrared spectra of the newly discovered brown dwarf Epsilon Indi Ba. This is the closest known brown dwarf to the solar system, with a distance of 3.626 pc. Spectra covering the ranges of 2.308-2.317 microns and 1.553-1.559 microns were observed at a spectral resolution of R=50,000 with the Phoenix spectrometer on the Gemini South telescope. The physical paramters of effective temperature and surface gravity are derived by comparison to model spectra calculated from atmospheres computed using unified cloudy models. An accurate projected rotational velocity is also derived.Comment: 9 pages, 3 figures. Astrophysical Journal Letters, in pres

    First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    Get PDF
    We present the first N-band nulling plus K- and L-band V2 observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 um wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the L-band and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly-shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 um) and "micron" (2 um) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.Comment: Accepted for publication in the Ap

    Accretion Signatures from Massive Young Stellar Objects

    Full text link
    High resolution (lambda / Delta-lambda = 50,000) K-band spectra of massive, embedded, young stellar objects are presented. The present sample consists of four massive young stars located in nascent clusters powering Galactic giant H II regions. Emission in the 2.3 micron 2--0 vibrational--rotational bandhead of CO is observed. A range of velocity broadened profiles seen in three of the objects is consistent with the emission arising from a circumstellar disk seen at various inclination angles. Br gamma spectra of the same spectral and spatial resolution are also presented which support an accretion disk or torus model for massive stars. In the fourth object, Br emission suggesting a rotating torus is observed, but the CO profile is narrow, indicating that there may be different CO emission mechanisms in massive stars and this is consistent with earlier observations of the BN object and MWC 349. To--date, only young massive stars of late O or early B types have been identified with clear accretion disk signatures in such embedded clusters. Often such stars are found in the presence of other more massive stars which are revealed by their photospheric spectra but which exhibit no disk signatures. This suggests the timescale for dissipating their disks is much faster than the less massive OB stars or that the most massive stars do not form with accretion disks.Comment: 28 pages, 10 Figures, accepted for publication in the Astrophysical Journa

    The Algorithm Theoretical Basis Document for Tidal Corrections

    Get PDF
    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes
    • …
    corecore