8,907 research outputs found

    Do Exchange Rates Move in Line With Uncovered Interest Parity?

    Get PDF
    According to uncovered interest rate Parity (UIP), the expected relative change in an exchange rate is equal to the difference between interest rates between the two currencies. Empirically, UIP is frequently rejected. In this paper, we examine whether exchange rates have at least any tendency to move in the direction predicted by UIP and whether exchange rates tend to move more in line with UIP in periods with large interest rate differentials.Exchange rates;Uncovered interest rate parity;Logit models

    Spiral order by disorder and lattice nematic order in a frustrated Heisenberg antiferromagnet on the honeycomb lattice

    Full text link
    Motivated by recent experiments on Bi3_3Mn4_4O12_{12}(NO3_3), we study a frustrated J1J_1-J2J_2 Heisenberg model on the two dimensional (2D) honeycomb lattice. The classical J1J_1-J2J_2 Heisenberg model on the two dimensional (2D) honeycomb lattice has N\'eel order for J2J1/6J_2 J_1/6, it exhibits a one-parameter family of degenerate incommensurate spin spiral ground states where the spiral wave vector can point in any direction. Spin wave fluctuations at leading order lift this accidental degeneracy in favor of specific wave vectors, leading to spiral order by disorder. For spin S=1/2S=1/2, quantum fluctuations are, however, likely to be strong enough to melt the spiral order parameter over a wide range of J2/J1J_2/J_1. Over a part of this range, we argue that the resulting state is a valence bond solid (VBS) with staggered dimer order - this VBS is a nematic which breaks lattice rotational symmetry. Our arguments are supported by comparing the spin wave energy with the energy of the dimer solid obtained using a bond operator formalism. Turning to the effect of thermal fluctuations on the spiral ordered state, any nonzero temperature destroys the magnetic order, but the discrete rotational symmetry of the lattice remains broken resulting in a thermal analogue of the nematic VBS. We present arguments, supported by classical Monte Carlo simulations, that this nematic transforms into the high temperature symmetric paramagnet via a thermal phase transition which is in the universality class of the classical 3-state Potts (clock) model in 2D. We discuss the possible relevance of our results for honeycomb magnets, such as Bi3_3M4_4O12_{12}(NO3_3) (with M=Mn,V,Cr), and bilayer triangular lattice magnets.Comment: Slightly revise

    Constraining the Collisional Nature of the Dark Matter Through Observations of Gravitational Wakes

    Get PDF
    We propose to use gravitational wakes as a direct observational probe of the collisional nature of the dark matter. We calculate analytically the structure of a wake generated by the motion of a galaxy in the core of an X-ray cluster for dark matter in the highly-collisional and collisionless limits. We show that the difference between these limits can be recovered from detailed X-ray or weak lensing observations. We also discuss the sizes of sub-halos in these limits. Preliminary X-ray data on the motion of NGC 1404 through the Fornax group disfavors fluid-like dark matter but does not exclude scenarios in which the dark matter is weakly collisional.Comment: 29 pages, 3 figures, submitted to Ap

    The Effect of the Outer Lindblad Resonance of the Galactic Bar on the Local Stellar Velocity Distribution

    Full text link
    Hydro-dynamical modeling of the inner Galaxy suggest that the radius of the outer Lindblad resonance (OLR) of the Galactic bar lies in the vicinity of the Sun. How does this resonance affect the distribution function in the outer parts of a barred disk, and can we identify any effect of the resonance in the velocity distribution f(v) actually observed in the solar neighborhood? To answer these questions, detailed simulations of f(v) in the outer parts of an exponential stellar disks with nearly flat rotation curves and a rotating central bar have been performed. For a model resembling the old stellar disk, the OLR causes a distinct feature in f(v) over a significant fraction of the outer disk. For positions <2kpc outside the OLR radius and at bar angles of \~10-70 degrees, f(v) inhibits a bi-modality between the low-velocity stars moving like the local standard of rest (LSR) and a secondary mode of stars predominantly moving outward and rotating more slowly than the LSR. Such a bi-modality is indeed present in f(v) inferred from the Hipparcos data for late-type stars in the solar neighborhood. If one interpretes this observed bi-modality as induced by the OLR -- and there are hardly any viable alternatives -- then one is forced to deduce that the OLR radius is slightly smaller than Ro. Moreover, by a quantitative comparison of the observed with the simulated distributions one finds that the pattern speed of the bar is 1.85+/-0.15 times the local circular frequency, where the error is dominated by the uncertainty in bar angle and local circular speed. Also other, less prominent but still significant, features in the observed f(v) resemble properties of the simulated velocity distributions, in particular a ripple caused by orbits trapped in the outer 1:1 resonance.Comment: 14 pages, 10 figures (Fig.2 in full resolution available upon request), accepted for publication in A

    Tracking Cyber Adversaries with Adaptive Indicators of Compromise

    Full text link
    A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expressions (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities. In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naive solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naive solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.Comment: This was presented at the 4th Annual Conf. on Computational Science & Computational Intelligence (CSCI'17) held Dec 14-16, 2017 in Las Vegas, Nevada, US

    ANIMA: Association Network Integration for Multiscale Analysis

    Get PDF
    Contextual functional interpretation of -omics data derived from clinical samples is a classical and difficult problem in computational systems biology. The measurement of thousands of datapoints on single samples has become routine but relating ‘big data’ datasets to the complexities of human pathobiology is an area of ongoing research. Complicating this is the fact that many publically available datasets use bulk transcriptomics data from complex tissues like blood. The most prevalent analytic approaches derive molecular ‘signatures’ of disease states or apply modular analysis frameworks to the data. Here we show, using a network-based data integration method using clinical phenotype and microarray data as inputs, that we can reconstruct multiple features (or endophenotypes) of disease states at various scales of organization, from transcript abundance patterns of individual genes through co-expression patterns of groups of genes to patterns of cellular behavior in whole blood samples, both in single experiments as well as in a meta-analysis of multiple datasets

    Do Exchange Rates Move in Line With Uncovered Interest Parity?

    Get PDF
    According to uncovered interest rate Parity (UIP), the expected relative change in an exchange rate is equal to the difference between interest rates between the two currencies. Empirically, UIP is frequently rejected. In this paper, we examine whether exchange rates have at least any tendency to move in the direction predicted by UIP and whether exchange rates tend to move more in line with UIP in periods with large interest rate differentials

    The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product

    Get PDF
    Electronic cigarettes (e-cigarettes) are an alternate nicotine delivery system that generate a condensation aerosol to be inhaled by the user. The size of the droplets formed in the aerosol can vary and contributes to drug deposition and ultimate bioavailability in the lung. The growing popularity of e-cigarette products has caused an increase in internet sources promoting the use of drugs other than nicotine (DOTNs) in e-cigarettes. The purpose of this study was to determine the effect of various e-cigarette and e-liquid modifications, such as coil resistance, battery voltage, and glycol and drug formulation, on the aerosol particle size. E-liquids containing 12 mg/mL nicotine prepared in glycol compositions of 100% propylene glycol (PG), 100% vegetable glycerin (VG), or 50:50 PG:VG were aerosolized at three voltages and three coil resistances. Methamphetamine and methadone e-liquids were prepared at 60 mg/mL in 50:50 PG:VG and all e-liquids were aerosolized onto a 10 stage Micro-Orifice Uniform Deposit Impactor. Glycol deposition correlated with drug deposition, and the majority of particles centered between 0.172–0.5 μm in diameter, representing pulmonary deposition. The 100% PG e-liquid produced the largest aerosol particles and the 100% VG and 50:50 PG:VG e-liquids produced ultra-fine particles \u3c0.3 μm. The presence of ultrafine particles indicates that drugs can be aerosolized and reach the pulmonary alveolar regions, highlighting a potential for abuse and risk of overdose with DOTNs aerosolized in an e-cigarette system

    Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)

    Get PDF
    M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along with spectra from the International Ultraviolet Explorer and Lick 1-m telescopes. The wide-field UIT image shows FUV emission from (a) an elongated nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c) a bright inner ring of H II regions at the perimeter of the inner disk (R = 48 arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc). The HST/FOC image resolves the NUV emission from the nuclear region into a bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30 deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates an approximately 10^7 or 10^8 yr-old stellar population from low-level starbirth activity blended with some LINER activity. Analysis of the H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers of stars and gas in M94 indicates that most of the star formation is being orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring, oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of approximately 1.5 provides an important precedent in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis); 19 pages of text + 19 figures (jpg files); accepted for publication in A
    • …
    corecore