7,414 research outputs found

    AdS Strings with Torsion: Non-complex Heterotic Compactifications

    Get PDF
    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kahler. We argue that all moduli are fixed, and we show that the Kahler potential and superpotential proposed in the literature yield the correct AdS radius. In the nearly Kahler case, we are able to solve the H Bianchi using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate.Comment: 42 pages; v2. added refs, revised discussion of Bianchi for N

    Contractions of Low-Dimensional Lie Algebras

    Full text link
    Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio

    Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation

    Full text link
    We present here an augmented space recursive technique in the k-representation which include diagonal, off-diagonal and the environmental disorder explicitly : an analytic, translationally invariant, multiple scattering theory for phonons in random binary alloys.We propose the augmented space recursion (ASR) as a computationally fast and accurate technique which will incorporate configuration fluctuations over a large local environment. We apply the formalism to Ni55Pd45Ni_{55}Pd_{45}, Ni_{88}Cr_12} and Ni50Pt50Ni_{50}Pt_{50} alloys which is not a random choice. Numerical results on spectral functions, coherent structure factors, dispersion curves and disordered induced FWHM's are presented. Finally the results are compared with the recent itinerant coherent potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure

    Universal Prefactor of Activated Conductivity in the Quantum Hall Effect

    Full text link
    The prefactor of the activated dissipative conductivity in a plateau range of the quantum Hall effect is studied in the case of a long-range random potential. It is shown that due to long time it takes for an electron to drift along the perimeter of a large percolation cluster, phonons are able to maintain quasi-equilibrium inside the cluster. The saddle points separating such clusters may then be viewed as ballistic point contacts between electron reservoirs with different electrochemical potentials. The prefactor is universal and equal to 2e2/he^2/h at an integer filling factor ν\nu and to 2e2/q2he^2/q^{2}h at ν=p/q\nu=p/q.Comment: 4 pages + 2 figures by reques

    Improving Effective Surgical Delivery in Humanitarian Disasters: Lessons from Haiti

    Get PDF
    Kathryn Chu and colleagues describe the experiences of Médecins sans Frontières after the 2010 Haiti earthquake, and discuss how to improve delivery of surgery in humanitarian disasters

    Two-dimensional model of dynamical fermion mass generation in strongly coupled gauge theories

    Get PDF
    We generalize the NF=2N_F=2 Schwinger model on the lattice by adding a charged scalar field. In this so-called χUϕ2\chi U\phi_2 model the scalar field shields the fermion charge, and a neutral fermion, acquiring mass dynamically, is present in the spectrum. We study numerically the mass of this fermion at various large fixed values of the gauge coupling by varying the effective four-fermion coupling, and find an indication that its scaling behavior is the same as that of the fermion mass in the chiral Gross-Neveu model. This suggests that the χUϕ2\chi U\phi_2 model is in the same universality class as the Gross-Neveu model, and thus renormalizable and asymptotic free at arbitrary strong gauge coupling.Comment: 18 pages, LaTeX2e, requires packages rotating.sty and curves.sty from CTA

    Numerical Study of Length Spectra and Low-lying Eigenvalue Spectra of Compact Hyperbolic 3-manifolds

    Full text link
    In this paper, we numerically investigate the length spectra and the low-lying eigenvalue spectra of the Laplace-Beltrami operator for a large number of small compact(closed) hyperbolic (CH) 3-manifolds. The first non-zero eigenvalues have been successfully computed using the periodic orbit sum method, which are compared with various geometric quantities such as volume, diameter and length of the shortest periodic geodesic of the manifolds. The deviation of low-lying eigenvalue spectra of manifolds converging to a cusped hyperbolic manifold from the asymptotic distribution has been measured by ζ−\zeta- function and spectral distance.Comment: 19 pages, 18 EPS figures and 2 GIF figures (fig.10) Description of cusped manifolds in section 2 is correcte

    The correction of the littlest Higgs model to the Higgs production process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H in e−γe^{-}\gamma collisions

    Full text link
    The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs(LH) model, we study the process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H and calculate the contributions of the LH model to the cross section of this process. The results show that, in most of parameter spaces preferred by the electroweak precision data, the value of the relative correction is larger than 10%. Such correction to the process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H is large enough to be detected via e−γe^{-}\gamma collisions in the future high energy linear e+e−e^{+}e^{-} collider(LCLC) experiment with the c.m energy s\sqrt{s}=500 GeV and a yearly integrated luminosity £=100fb−1\pounds=100fb^{-1}, which will give an ideal way to test the model.Comment: 13 pages, 4 figure

    Higgs boson pair production process e+e−→ZHHe^+e^-\to ZHH in the littlest Higgs model at the ILC

    Full text link
    The physics prospect at future linear e+e−e^{+}e^{-} colliders for the study of the Higgs triple self-coupling via the process of e+e−→ZHHe^{+}e^{-}\to ZHH is investigated. In this paper, we calculate the contribution of the new particles predicted by the littlest Higgs model to the cross sections of this process in the future high energy e+e−e^{+}e^{-} collider(ILCILC). The results show that, in the favorable parameter spaces preferred by the electroweak precision, the deviation of the total cross sections from its SMSM value varies from a few percent to tens percent, which may be detected at the future ILCILC experiments with s\sqrt{s}=500GeV.Comment: 13 pages,4 figure
    • …
    corecore