22,114 research outputs found
New approaches to the measurement of chlorophyll, related pigments and productivity in the sea
In the 1984 SBIR Call for Proposals, NASA solicited new methods to measure primary production and chlorophyll in the ocean. Biospherical Instruments Inc. responded to this call with a proposal first to study a variety of approaches to this problem. A second phase of research was then funded to pursue instrumentation to measure the sunlight stimulated naturally occurring fluorescence of chlorophyll in marine phytoplankton. The monitoring of global productivity, global fisheries resources, application of above surface-to-underwater optical communications systems, submarine detection applications, correlation, and calibration of remote sensing systems are but some of the reasons for developing inexpensive sensors to measure chlorophyll and productivity. Normally, productivity measurements are manpower and cost intensive and, with the exception of a very few expensive multiship research experiments, provide no contemporaneous data. We feel that the patented, simple sensors that we have designed will provide a cost effective method for large scale, synoptic, optical measurements in the ocean. This document is the final project report for a NASA sponsored SBIR Phase 2 effort to develop new methods for the measurements of primary production in the ocean. This project has been successfully completed, a U.S. patent was issued covering the methodology and sensors, and the first production run of instrumentation developed under this contract has sold out and been delivered
Solid state switch
Solid state switching circuit design to increase current capacity of low rated relay contact
Inertial gyroscope system application considerations
Criteria for designing inertial gyroscope system
Zero gravity liquid mixer
An apparatus for mixing liquids under conditions of zero gravity is disclosed. The apparatus is comprised of a closed reservoir for the liquids, with a means for maintaining a positive pressure on the liquids in the reservoir. A valved liquid supply line is connected to the reservoir for supplying the reservoir with the liquids to be mixed in the reservoir. The portion of the reservoir containing the liquids to be mixed is in communication with a pump which alternately causes a portion of the liquids to flow out of the pump and into the reservoir to mix the liquids. The fluids in the reservoir are in communication through a conduit with the pump which alternately causes a portion of the fluids to flow out of the pump and into the sphere. The conduit connecting the pump and sphere may contain a nozzle or other jet-forming structure such as a venturi for further mixing the fluids
Air removal device
The disclosure concerns a device suitable for removing air from water under both zero and one 'g' gravity conditions. The device is comprised of a pair of spaced membranes on being hydrophobic and the other being hydrophilic. The air-water mixture is introduced into the space therebetween, and the selective action of the membranes yields removal of the air from the water
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
Dimension minimization of a quantum automaton
A new model of a Quantum Automaton (QA), working with qubits is proposed. The
quantum states of the automaton can be pure or mixed and are represented by
density operators. This is the appropriated approach to deal with measurements
and dechorence. The linearity of a QA and of the partial trace super-operator,
combined with the properties of invariant subspaces under unitary
transformations, are used to minimize the dimension of the automaton and,
consequently, the number of its working qubits. The results here developed are
valid wether the state set of the QA is finite or not. There are two main
results in this paper: 1) We show that the dimension reduction is possible
whenever the unitary transformations, associated to each letter of the input
alphabet, obey a set of conditions. 2) We develop an algorithm to find out the
equivalent minimal QA and prove that its complexity is polynomial in its
dimension and in the size of the input alphabet.Comment: 26 page
- …
