3,008 research outputs found

    Relaxation of surface charge on rotating dielectric spheres: Implications on dynamic electrorheological effects

    Full text link
    We have examined the effect of an oscillatory rotation of a polarized dielectric particle. The rotational motion leads to a re-distribution of the polarization charge on the surface of the particle. We show that the time averaged steady-state dipole moment is along the field direction, but its magnitude is reduced by a factor which depends on the angular velocity of rotation. As a result, the rotational motion of the particle reduces the electrorheological effect. We further assume that the relaxation of polarized charge is arised from a finite conductivity of the particle or host medium. We calculate the relaxation time based on the Maxwell-Wagner theory, suitably generalized to include the rotational motion. Analytic expressions for the reduction factor and the relaxation time are given and their dependence on the angular velocity of rotation will be discussed.Comment: Accepted for publications by Phys. Rev.

    Computer simulations of electrorheological fluids in the dipole-induced dipole model

    Full text link
    We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivites. The point-dipole (PD) approximation being routinely adopted in computer simulation of ER fluids is shown to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model accounts for multipolar interaction partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.

    ATLAS Pixel Module Assembly in Dortmund

    Get PDF
    The ATLAS Pixel detector is the inner- most substructure of the multi-purpose LHC ex- periment ATLAS at CERN and part of the track- ing system. The Pixel vertex system will consist of 1744 hybrid pixel modules, about 280 of them have been assembled at the University of Dortmund. This work provides a detailed description of the ATLAS Pixel module assembly procedure executed at the University of Dortmund. Effort had been put into the developement of a laboratory and testing environment to fulfill all technical demands of a se- rial production of fully efficent pixel modules

    Cut loci and conjugate loci on Liouville surfaces

    Get PDF
    In the earlier paper (Itoh and Kiyohara, Manuscr Math 114:247–264, 2004), we showed that the cut locus of a general point on two-dimensional ellipsoid is a segment of a curvature line and proved "Jacobi’s last geometric statement" on the singularities of the conjugate locus. In the present paper,we showthat a wider class of Liouville surfaces possess such simple cut loci and conjugate loci. The results include the determination of cut loci and the set of poles on two-sheeted hyperboloids and elliptic paraboloids

    Magnetized strangelets at finite temperature

    Get PDF
    The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied. Temperature effects are also taken into account in order to study their stability compared to the 56Fe isotope and non-magnetized strangelets using the liquid drop model. Massive quarks are considered with the aim to have a more realistic description for strangelets in the astrophysical context and the environment of heavy ion colliders, playing also an important role in the thermodynamical quantities of the quark gas. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature effects are taken into account. Magnetized strangelets in a paired superconductor phase (magnetized color flavor locked phase) are also discussed. It is shown that they are more stable than ordinary magnetized strangelets for typical gap values of the order of O(100) MeV.Comment: 10 pages, 10 figures, discussion extended, new references adde

    Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    Get PDF
    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept. 25-29, 200
    • …
    corecore