
CUT LOCI AND CONJUGATE LOCI ON LIOUVILLE
SURFACES

JIN-ICHI ITOH AND KAZUYOSHI KIYOHARA

Abstract. In the earlier paper [4], we showed that the cut locus
of a general point on two-dimensional ellipsoid is a segment of a
curvature line and proved “Jacobi’s last geometric statement” on
the singularities of the conjugate locus. In the present paper, we
show that a wider class of Liouville surfaces possess such simple
cut loci and conjugate loci. The results include the determination
of cut loci and the set of poles on two-sheeted hyperboloids and
elliptic paraboloids.

1. Introduction

On a riemannian manifold, any geodesic γ(t) starting at a point
γ(0) = p has the minimal length on each interval [0, T ], i.e., the length
is equal to the distance between the end points, provided T > 0 being
small. If the supremum t0 of the set of such T is finite, then the point
γ(t0) is called the cut point of p along the geodesic γ(t) (t ≥ 0). If one
considers the minimality of the geodesic segment γ|[0,T ] only among
the curves which are infinitesimally close to γ(t), then one obtains the
notion of (first) conjugate point of p along the geodesic γ(t). The cut
locus (resp. the conjugate locus) of a point p is then defined as the
set of all cut points (resp. conjugate points) of p along the geodesics
starting at p. For the general properties of cut loci and conjugate loci,
we refer to [8], [10] (see also §2).

In the paper [4], we investigated the cut loci and the conjugate loci of
general points on two-dimensional (tri-axial) ellipsoids. In particular,
we showed that: 1) the cut locus of a general point is a segment of
the curvature line which passes through the antipodal point of the
initial point; 2) the conjugate locus of a general point contains just
four singularities, which are cusps and located on the curvature lines
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passing through the antipodal point of the initial point. (The second
result is known as the last geometric statement of Jacobi; [1], [2], [11].
For rotational ellipsoids, see [14].)

Those properties look quite restrictive, so it would be natural to ask
whether there exist other surfaces whose cut loci and conjugate loci
possess similar properties as ellipsoids. The aim of this paper is to show
that certain Liouville surfaces, both compact and noncompact ones,
have such simple cut loci and have similar singularities on conjugate
loci for general points. In the noncompact case, our results especially
include the determination of cut loci and the set of poles on two-sheeted
hyperboloids and elliptic paraboloids. Here, pole is a point whose cut
locus is the empty set. One can find in [12] some numerical experiment
on the set of poles of those surfaces with beautiful graphics.

For noncompact surfaces of revolution, their cut loci and the distri-
bution of poles have been studied in [14], [15], [16] in detail. Also, there
are some numerical results for cut loci on compact Liouville surfaces
[13], in which the authors conjectured that cut loci of some compact
Liouville surfaces have similar properties to those of ellipsoids. Un-
fortunately, the relation between the extent of Liouville surfaces they
considered and those treated in this paper is not clear. It should be
noted that our conditions for Liouville surfaces given in this paper
would be merely a part of the possible sufficient conditions for cut loci
and conjugate loci being simple. A main advantage of our conditions
is the simplicity of their expressions. Also, since our model space here
is the ellipsoid, we do not consider Liouville surfaces diffeomorphic to
tori in this paper.

This paper is organized as follows. In §2 we first review general
properties of cut point (locus) and conjugate point (locus), as well as
the rigorous definition of conjugate point. They are well-known facts
for readers who are familiar with riemannian geometry. Next, in §3
we review general nature of Liouville surfaces which are considered
in this paper. They are parametrized with a positive function in one
variable and one or two constants. In §4 global behaviors of geodesics
on Liouville surfaces are illustrated.

In §5 we consider compact Liouville surfaces and prove that the
cut locus of a general point becomes a curve segment under a certain
monotonicity condition for the defining function. The proof is divided
into two steps: First we assume a stronger condition, under which the
proof goes completely parallel to the case of ellipsoid [4], and we give
only an outline; secondly we use a technique of “projectively equivalent
metrics” to weaken the condition. Although projective equivalence
does not preserve distance in general, it preserves natural coordinate
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lines as well as the geodesic orbits in the present case, which is enough
for the determination of cut loci.

In §6 cut loci on noncompact Liouville surfaces are considered. Under
a similar condition to the one in §5, we show that cut loci of general
points become “simple”. More precisely, the possible shapes of cut
loci in this case are shown to be the following three types; the empty
set, a curve segment, and a disjoint union of two curve segments. It
looks strange, but disconnected cut loci appear only when the set of
poles is disconnected. For two-sheeted hyperboloids the sets of poles
are connected in some cases and are disconnected in others; both cases
can arise. Also, it turns out that the set of poles of elliptic paraboloid
comprises only two points.

In §7 we take a slightly different approach to the noncompact case
and obtain similar results to those in §6. The key idea here is to show
the following fact: Some noncompact Liouville surfaces can be projec-
tively embedded onto a half of certain compact Liouville surfaces. For
example, using the fact that two-sheeted hyperboloids are projectively
embedded into ellipsoids, one can see how the cut loci on hyperboloids
are.

Finally, in §8, we consider conjugate loci on compact and noncom-
pact Liouville surfaces. In both cases we assume a bit stronger con-
dition than in §5 and §6 respectively. For the compact case, we show
that the conjugate locus of a general point contains just four singular
points, which are cusps and located on the natural coordinate lines
passing through the antipodal point of the original one. For the non-
compact case, we show that: 1) the conjugate locus of a point is not
empty if and only if its cut locus is not empty; 2) the singular points
of the conjugate locus coincide with the end points of the cut locus
(therefore they are at most two points), and they are cusps.

2. Cut locus and conjugate locus

In this section we collect standard properties of cut point (locus) and
conjugate point (locus) without proofs, which seem to be more or less
well-known. For the proofs and the details, see [8], [10].

Let S be a two-dimensional complete riemannian manifold, and let
p ∈ S. Let Expp : TpS → S be the exponential mapping at p, which is
defined by

γ(t) = Expp(tv) is the geodesic with γ(0) = p, γ̇(0) = v ∈ TpS .

Then Expp is a C∞ mapping and is a diffeomorphism on a neighborhood
of 0p ∈ TpS. The rigorous definition of conjugate points are as follows:
Let γ(t) = Expp(tv) be a geodesic, where v ∈ UpS (the circle of unit
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tangent vectors at p). Then γ(T ) is called a conjugate point of p = γ(0)
along the geodesic γ(t), if d Expp, the differential of Expp, at Tv

d Expp : TTv(TpS) = TpS → Tγ(T )S

is not linearly isomorphic. The following property is well-known.

Proposition 2.1. γ(T ) is a conjugate point of γ(0) along γ(t) if and
only if there is a non-zero, normal Jacobi field Y (t) along γ(t) such
that Y (0) = 0 and Y (T ) = 0.

Here, normal Jacobi field Y (t) is, by definition, a vector field along
γ(t) of the form y(t)V (t), where V (t) is the unit normal (parallel) vector
field along γ(t) and the function y(t) satisfies the linear differential
equation

y′′(t) = −σ(γ(t))y(t) ,

σ being the Gauss curvature of S. From this proposition we know that
the conjugate points along a geodesic appear discretely. If 0 < T1 <
T2 < · · · is the set of times representing the conjugate points of γ(0)
along γ(t), then γ(T1), γ(T2), . . . are called the first conjugate point,
the second conjugate point, etc., respectively. The conjugate locus of
a point p ∈ S is the set of first conjugate points along the geodesics
starting at p.

For each p ∈ S and v ∈ UpS, we define r0(v) > 0 and r1(v) > 0 so
that t = r0(v) (resp. t = r1(v)) is the time representing the cut point
(resp. the first conjugate point) of p along the geodesic γ(t) defined by
γ̇(0) = v. We have

Proposition 2.2. Let γ(t) be a geodesic and v, r0(v), and r1(v) be as
above.

(1) If 0 < t0 < r0(v), then the geodesic segment γ|[0,t0] is the unique
minimal curve joining the end points p and γ(t0).

(2) If t0 > r0(v), then the curve segment γ|[0,t0] is not minimal.
(3) r0(v) ≤ r1(v).
(4) If r0(v) < r1(v), then there is another minimal geodesic γ̄(t)

joining p and γ(r0(v)).

Proposition 2.3. Put V = {tv | v ∈ UpS, 0 ≤ t < r0(v)}, which is an
open subset of TpS. Then

(1) Expp : V → Expp(V ) is a diffeomorphism.

(2) Expp(V̄ ) = S.
(3) Expp(∂V ) is the cut locus of p, and Expp(∂V )

⋂
Expp(V ) = ∅.

The set ∂V (⊂ TpS) is called the tangent cut locus, which is a smooth
curve at r0(v)v with r0(v) < r1(v) and Up → ∂V (v 7→ r0(v)v) is a
homeomorphism. Also, as a consequence of Proposition 2.1, we have
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Proposition 2.4. r1(v) is a smooth function of v ∈ Up. In particular,
singularities of the conjugate locus only appear at points Expp(r1(v)v),
where v ∈ Up is a critical point of r1(v).

3. Liouville surfaces

A Liouville surface is, roughly speaking, a surface endowed with a
riemannian metric of the form

(f1(x1) − f2(x2))(dx2
1 + dx2

2).

Correctly speaking, it is a two-dimensional complete riemannian man-
ifold whose geodesic flow has a first integral which is a quadratic form
on each cotangent space. For the details, see [6], [3], and [7].

Liouville surfaces needed here are those of type (A) and type (C)
explained in [7, §3]. Since we only need some restricted version, we
shall explain them in that form.

3.1. Type (A) — compact case. Let b1 and b2 be real constants
such that b2 < 0 < b1, and let A(λ) be a positive C∞ function on the
interval b2 ≤ λ ≤ b1. We shall construct a compact Liouville surface
from those data.

Define the positive constants α1 and α2 by

α1

2
=

∫ b1

0

A(λ) dλ√
λ(b1 − λ)(λ − b2)

,
α2

2
=

∫ 0

b2

A(λ) dλ√
−λ(b1 − λ)(λ − b2)

.

Next, define the function fi(xi) on the circle R/αiZ = {xi} (i = 1, 2)
by the conditions

f ′
i(xi)

2 =
(−1)i−14fi(b1 − fi)(fi − b2)

A(fi)2
,

fi(0) = 0, fi(αi/4) = bi, fi(−xi) = fi(αi/2 − xi) = fi(xi) .

Define the equivalence relation ∼ on the torus R = R/α1Z×R/α2Z =
{(x1, x2)} by

(−x1,−x2) ∼ (x1, x2)

and let S be the corresponding quotient space: S = R/∼. Clearly
S is homeomorphic to the two-sphere S2. There are four ramification
points of the quotient map R → S, and by taking x2

1 − x2
2 and 2x1x2

as coordinate functions around the image of (0, 0) for example, a dif-
ferentiable structure is defined on S and the map R → S becomes of
class C∞.

It is not hard to verify that through the quotient map,

g = (f1(x1) − f2(x2))(dx2
1 + dx2

2)
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and

F =
f2(x2)ξ

2
1 + f1(x1)ξ

2
2

f1(x1) − f2(x2)

express a well-defined riemannian metric on S and a C∞ function on
the cotangent bundle T ∗S respectively, where (ξ1, ξ2) are the fiber co-
ordinates associated with the base coordinates (x1, x2). F is a first
integral of the geodesic flow determined by g.

For example, if A(λ) = 1, then S is the sphere of constant curva-
ture 1, and if A(λ) =

√
λ + a (a > −b2), then S is isometric to the

ellipsoid whose three principal axes have the lengths 2
√

b1 + a, 2
√

a,
and 2

√
b2 + a respectively. In this case, the functions (f1(x1), f2(x2))

are equal with the elliptic coordinates of the ellipsoid. One can verify
those by using the explicit form of the metric described with the elliptic
coordinates.

3.2. Type (C) — noncompact case. Let b < 0 be a constant and let
B(λ) be a positive function on the interval [b,∞). As in the compact
case, we shall construct a noncompact Liouville surface from those
data.

Define constants α1 and α2 by (α1 may equal ∞)

2α1 =

∫ ∞

0

B(λ) ds√
λ(λ − b)

,
α2

2
=

∫ 0

b

B(λ) ds√
−λ(λ − b)

.

Next, define the function f1(x1) on the interval (−α1, α1) and the func-
tion f2(x2) on the circle R/α2Z = {x2} by the conditions

f ′
i(xi)

2 =
(−1)i−14fi(fi − b)

B(fi)2
,

fi(0) = 0, f2(α2/4) = b, lim
x1→α1

f1(x1) = ∞,

f2(−x2) = f2(α2/2 − x2) = f2(x2), f1(−x1) = f1(x1) .

Define the equivalence relation ∼ on the cylinder R = (−α1, α1) ×
R/α2Z = {(x1, x2)} by

(−x1,−x2) ∼ (x1, x2)

and put S = R/∼. The quotient space S is homeomorphic to R2. As
in the compact case, a natural differentiable structure is defined on S
so that the quotient map R → S is of C∞. Also,

g = (f1(x1) − f2(x2)(dx2
1 + dx2

2)

and

F =
f2(x2)ξ

2
1 + f1(x1)ξ

2
2

f1(x1) − f2(x2)
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express a riemannian metric on S and a function on the cotangent
bundle T ∗S respectively, and F is a first integral of the geodesic flow
determined by g.

For example, the two-sheeted hyperboloid

u2
1

a1

+
u2

2

a2

+
u2

3

a3

= 1 (a1 > 0 > a2 > a3)

is obtained by the data b = −(a2 − a3), B(λ) =

√
λ − a3

λ + a1 − a3

, and

the elliptic paraboloid

u2
1

a1

+
u2

2

a2

− 2u3 = 0 (a1 > a2 > 0)

corresponds to the case b = −(a1 − a2), B(λ) =
√

λ + a1. One can
verify those by using the explicit forms of the metrics described with
the coordinates similar to the elliptic coordinate system, i.e., those
obtained form the family of confocal quadrics; see [7, §A.3]. Also, if
B(λ) = 1, then S is the flat R2, and if B(λ) = (λ − c)−1/2, c < b, then
S has constant negative curvature −1 (see [7, §A.1] ).

Remark 3.1. The simplest way to define a Liouville surface is to give
functions f1(x1) and f2(x2) directly. The reason why we use the func-
tions A(λ) and B(λ) for describing Liouville surfaces is that the con-
ditions we need are expressed in the simplest way with those functions
(see §§5,6, and 8).

Remark 3.2. We note that two systems of constants and functions
{b1, b2, A(λ)} and {b̄1, b̄2, Ā(λ)} define mutually isomorphic Liouville
surfaces if and only if b̄1 = cb1, b̄2 = cb2, Ā(λ) = A(λ/c) for some
c > 0, or b̄1 = cb2, b̄2 = cb1, Ā(λ) = A(λ/c) for some c < 0. Moreover,
if A(λ) is not constant, then “isomorphic” can be replaced by “isomet-
ric”. Similarly, two systems of constants and functions {b, B(λ)} and
{b̄, B̄(λ)} defines mutually isomorphic Liouville surfaces if and only if
b̄ = cb and B̄(λ) = B(λ/c)/

√
c for some c > 0. (See [7, p. 4, §§3.4,

3.5].)

4. Geodesic equations

We shall use (x1, x2) given in the previous section as a coordinate
system of S. The energy function (the hamiltonian of the geodesic
flow) E is expressed as

2E =
ξ2
1 + ξ2

2

f1(x1) − f2(x2)
.
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Therefore, in both types (A) and (C), the geodesic equations with
2E = 1 and F = c are given by

ε1
dx1√

f1(x1) − c
=ε2

dx2√
c − f2(x2)

dt = ε1

√
f1(x1) − c dx1 + ε2

√
c − f2(x2) dx2 ,

(4.1)

where εi(= ±1) denotes the sign of dxi/dt (i = 1, 2). Geodesic orbits
are determined by the first equation and the length parameter t is
obtained by integrating the second formula on each orbit (for the detail,
see [4]).

In this section, we shall give a rough sketch of the behavior of
geodesics in both types (A) and (C). Let γ(t) = (x1(t), x2(t)) be a
geodesic with 2E = 1 and F = c. The range of c (= the image of F
on the unit cotangent bundle) is [b2, b1] for the type (A) and [b,∞) for
the type (C).

4.1. Type (A). First, let us observe the case where b2 ≤ c < 0. Let
ν2(c) be the unique value of x2 in the interval 0 < x2 ≤ α2/4 such that
f2(x2) = c. Then, x2(t) oscillates either between ν2(c) and α2/2−ν2(c),
or between α2/2 + ν2(c) and α2 − ν2(c), depending on the the initial
position. Also, x1(t) increases or decreases monotonously. In the case
where 0 < c ≤ b1, x1(t) and x2(t) exchange their roles and behave in
similar ways as above. In this case we define ν1(c) for c > 0 in the
same way as ν2(c).

In the case where c = 0, geodesics behave as follows. Let us call
the four points (x1, x2) = (0, 0), (0, α2/2), (α1/2, α2/2), (α1/2, 0) as
p0, p1, p2, p3 respectively. They are the branch points of the quotient
mapping R → S, and lie on a single closed geodesic L, represented by
x1 = 0, α1/2, or x2 = 0, α2/2, in this order. Let l denote the length
of L. Any geodesic γ(t) with c = 0, which do not coincide with L,
necessarily pass one of the four point at some time. If γ(t0) = pi,
then γ(t0 + l/2) = pi+2 (i + 2 should be considered mod 2). The
segment γ(t) (t0 < t < t0 + l/2) does not intersect L, and x1(t) and
x2(t) vary monotonously during this time interval. In particular, we
have γ(t0 + l) = pi. Conversely, for any geodesic which pass one of the
four points, the value c of F must be 0.

4.2. Type (C). The case where b ≤ c < 0 is similar to that of type
(A): ν2(c) is defined as before; x2(t) oscillates either between ν2(c) and
α2/2 − ν2(c), or between α2/2 + ν2(c) and α2 − ν2(c); x1(t) increases
or decreases monotonously. If 0 < c < α1, then x2(t) varies on the
circle R/α2Z monotonously, but x1(t) varies in the interval [ν1(c), α1)
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or (−α1,−ν1(c)]. Here, ν1(c) is the unique value of x1 such that 0 < x1

and f1(x1) = c. In this case, if x1(0) > 0 and x′
1(0) < 0 for example,

then x1(t) first decreases up to ν1(c), and next increases up to α1

monotonously.
In the case where c = 0, any geodesic must pass one of the two points

p1, p2 represented by (x1, x2) = (0, 0) and (0, α2/2) respectively. The
geodesic L passing through both p1 and p2 is represented by x1 = 0, or
x2 = 0, α2/2. A geodesic which passes one of those points at t = 0, and
which dose not coincide with L, does not intersect L at any time t 6= 0,
and both x1(t) and x2(t) vary monotonously. Since at any point p ∈ S
not lying on L the quadratic form F on T ∗

p S has just two directions
of zeros, and since those directions correspond to the tangent vectors
of the geodesics from the points p1 and p2 respectively, one can easily
see that the geodesic connecting p and pi is unique (i = 1, 2). As a
consequence, it turns out that the points p1 and p2 are poles, i.e., the
exponential maps Tpi

S → S at those points are diffeomorphisms.

5. Cut loci on surfaces of type (A)

Let us define the functions I1(c) and I2(c) as follows. In view of the
geodesic equation (4.1), these quantities are intimately related to the
global behavior of the geodesics: For b2 < c < 0,

I1(c) =

∫ α1/2

0

dx1√
f1(x1) − c

, I2(c) =

∫ α2/2−ν2(c)

ν2(c)

dx2√
c − f2(x2)

;

and for 0 < c < b1,

I1(c) =

∫ α1/2−ν1(c)

ν1(c)

dx1√
f1(x1) − c

, I2(c) =

∫ α2/2

0

dx2√
c − f2(x2)

.

They are also expressed as

I1(c) =

∫ b1

0

A(λ) dλ√
(b1 − λ)(λ − b2)λ(λ − c)

,

I2(c) =

∫ c

b2

A(λ) dλ√
(b1 − λ)(λ − b2)(−λ)(−λ + c)

for c < 0, and

I1(c) =

∫ b1

c

A(λ) dλ√
(b1 − λ)(λ − b2)λ(λ − c)

,

I2(c) =

∫ 0

b2

A(λ) dλ√
(b1 − λ)(λ − b2)(−λ)(−λ + c)
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for c > 0.
We now put the following monotonicity condition on the function

A(λ):

(5.1)
d2

dλ2
((b1 − λ)A(λ)) < 0 on [b2, b1] .

Let p be a point on S which is not equal to one of the four points
p1, p2, p3, p4, and let C(p) be the cut locus of it. Suppose that p is
represented by (x1, x2) = (s1, s2). Taking the symmetries of S into
account, we may assume that 0 ≤ si ≤ αi/4. We denote by p̃ the
antipodal point p, which is represented by (α1/2 − s1, α2/2 + s2).

Theorem 5.1. Assume that the condition (5.1) is satisfied. Then,
C(p) is equal to a segment I of the coordinate line x2 = α2/2 − s2

containing the point p̃. The end points x1 = s+ and x1 = s− + α1

(s1−α1/2 < s− < s1 < s+ < s1+α1/2) of the segment I are determined
by

I2(c) =

∫ s+

s1

dx1√
f1(x1) − c

=

∫ s1

s−

dx1√
f1(x1) − c

,

where c = f2(s2). Namely,

I = {(x1, x2) ∈ S |x2 =
α2

2
− s2, s+ ≤ x1 ≤ s− + α1} .

We shall first prove this theorem under the following stronger con-
dition:

(5.2) A′(λ) > 0, A′′(λ) < 0 on [b2, b1] .

In this case the proof is almost similar to that of the case of ellipsoids
[4], so we shall only give an outline. The key point of the proof is the
following inequalities.

Proposition 5.1. If A(λ) satisfies the condition (5.2), then:

(1) I1(c) − I2(c) > 0 for any c ∈ [b2, b1].
(2) (∂/∂c) (I1(c) − I2(c)) < 0 for any c ∈ [b2, b1].

Proof. First, observe that I2(c) = I1(c) if A(λ) is constant, which is a
periodic integral of the holomorphic 1-form µ−1dλ on the elliptic curve
µ2 = (b1 − λ)(λ − b2)λ(λ − c). Therefore, putting

A1(λ) =
A(λ) − A(c)

λ − c
=

∫ 1

0

A′(tλ + (1 − t)c) dt ,
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we have

I1(c) − I2(c)

=

∫ b1

0

√
λ − cA1(λ) dλ√

(b1 − λ)(λ − b2)λ
+

∫ c

b2

√
c − λA1(λ) dλ√

(b1 − λ)(λ − b2)(−λ)
.

for c < 0 and a similar formula for c > 0. Since A1(λ) > 0, it follows
that I1(c) − I2(c) > 0. Moreover, differentiating the above formula by
c, we have

∂

∂c
(I1(c) − I2(c))

=

∫ b1

0

√
λ − c A2(λ) dλ

2
√

(b1 − λ)(λ − b2)λ
+

∫ c

b2

√
c − λA2(λ) dλ

2
√

(b1 − λ)(λ − b2)(−λ)
,

where

A2(λ) =
A1(λ) − A1(c)

λ − c
=

∂

∂c
A1(λ) =

∫ 1

0

(1 − t) A′′(tλ + (1 − t)c) dt .

Since A2(λ) < 0, the assertion (2) follows. Note that those formulas
are also valid at c = 0. ¤

Let us parametrize the unit tangent vectors at p by η ∈ R/2πZ;

v(η) = cos η
∂/∂x1

|∂/∂x1|
+ sin η

∂/∂x2

|∂/∂x2|
∈ TpS.

Let γη(t) = (x1(η, t), x2(η, t)) be the geodesic such that γ̇η(0) = v(η)
and let c(η) = f2(s2)(cos η)2 +f1(s1)(sin η)2 be the corresponding value
of the first integral F . We put

(5.3) σi(η, t) =

∫ t

0

∣∣∣∣dfi(xi(η, s))

ds

∣∣∣∣ ds (i = 1, 2)

and define positive times t1(η) and t2(η) by

(5.4)
σ1(η, t1(η)) = 2(b1 − max{c(η), 0}),
σ2(η, t2(η)) = 2(min{c(η), 0} − b2) .

Then ti(η) is the positive time such that the total variation of t 7→
xi(t, η) (0 ≤ t ≤ ti(η)) is equal to the size of the range of xi(t, η) if
the range is an interval, and is equal to αi/2 if the range is the whole
circle. In particular, we have

x2(t2(η), η) =

{
α2

2
− s2 (c(η) < 0)

s2 ± α2

2
(c(η) > 0)
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and

x1(t1(η), η) =

{
s1 ± α1

2
(c(η) < 0)

α1

2
− s1 (c(η) > 0)

.

Also, let t = r(η) be the first positive time such that γη(r(η)) is a
conjugate point of p along the geodesic γη(t).

The following lemma holds without the conditions (5.2) nor (5.1),
which indicates that the two geodesics γη(t) and γ−η(t) meets again at
t = t2(η).

Lemma 5.1. (1) γη (t2(η)) = γ−η (t2(−η)) and t2(η) = t2(−η).
(2) r(η) = t2(η) if η = 0, π.

Proof. (1) When c(η) < 0, we have∫ t2(η)

0

|∂x2(t, η)/∂t| dt√
c(η) − f2(x2(t, η))

=

∫ t2(η)

0

|∂x1(t, η)/∂t| dt√
f1(x1(t, η)) − c(η)

by the geodesic equation (4.1). This implies∫ α2/2−s2

s2

dx2√
c(η) − f2(x2)

= ε1

∫ x1(t2(η),η)

s1

dx1√
f1(x1) − c(η)

,

where ε1 is the sign of dx1/dt. Since c(η) = c(−η), and since ε1 is
common for x1(t, η) and x1(t,−η), it follows that

x1(t2(η), η) = x1(t2(−η),−η) , and γη(t2(η)) = γ−η(t2(−η)) .

Then, by the formula

t2(η) = ε1

∫ x1(t2(η),η)

s1

√
f1(x1) − c(η) dx1+

∫ α2/2−s2

s2

√
c(η) − f2(x2) dx2 ,

which follows from (4.1), we have t2(η) = t2(−η). The case where
c(η) ≥ 0 is similar. The proof of (2) is completely the same as [4,
Proposition 3]; so we shall omit.

¤
As in [4], one can show the following items in each case c(η) < 0,

c(η) > and c(η) = 0. (Note that the sign of c employed here is opposite
to that in [4].)

(1) γη (t2(η)) ∈ I and γη(t) 6∈ I for any 0 < t < t2(η).
(2) The mapping η 7→ γη (t2(η)) is injective on [0, π].
(3) r(η) > t2(η) if 0 < η < π, π < η < 2π.

These items were proved in [4] by means of the properties of I3(c) =
I1(c) − I2(c) described in the proposition above. Thus these are also
proved in this situation in the same way. While those properties were
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obtained in [4] via an explicit integral expression of I3(c), we obtained
them here directly from the condition (5.2).

Using the above facts, one can show that the exponential map

Expp : {tv(η) ∈ TpM | 0 ≤ t < t2(η), η ∈ R/2πZ} → M − I

is a diffeomorphism (see [4, p.258]). Since the cut point of p along the
geodesic γη(t) appear at t ≤ t2(η) by Lemma 5.1 and Proposition 2.2,
it therefore follows that

I = {Expp (t2(η)v(η)) | v ∈ UpS}

is the cut locus of p. Thus we have Theorem 5.1 under the condition
(5.2).

Next, we shall consider the general case; A(λ) satisfies the condition
(5.1), but does not necessarily satisfy (5.2). Here, we use “projectively
equivalent metrics”.

Given a Liouville metric g = (f1(x1) − f2(x2))(dx2
1 + dx2

2), if one
defines a new Liouville metric ḡ by

(5.5)

ḡ =
f1(x1) − f2(x2)

(αf1 + β)(αf2 + β)

(
dx2

1

αf1 + β
+

dx2
2

αf2 + β

)
=

(
f1

β(αf1 + β)
− f2

β(αf2 + β)

)(
dx2

1

αf1 + β
+

dx2
2

αf2 + β

)
,

α, β being constants, then it is known that the geodesic orbits cor-
responding to the two metrics g and ḡ coincide, i.e., the associated
Levi-Civita connections are mutually projectively equivalent. (This is
a classical result. See, e.g., [17].)

We now explain how they are constructed. Let S be a Liouville
surface constructed from constants b2 < 0 < b1 and a positive function
A(λ) on [b2, b1]. Let α and β be any constants such that α < 0, β > 0,
and αb1 + β > 0. Put
(5.6)

Ā(µ) =
A

(
β2µ

1−αβµ

)
√

β(αb1 + β)(αb2 + β)
, b̄i =

bi

β(αbi + β)
(i = 1, 2) .

From the data b̄1, b̄2, and Ā(µ) we construct positive numbers ᾱ1 and
ᾱ2, the torus

R̄ = R/ᾱ1Z × R/ᾱ2Z = {(x̄1, x̄2)} ,



14 JIN-ICHI ITOH AND KAZUYOSHI KIYOHARA

the functions f̄1(x̄1) and f̄2(x̄2), and the Liouville surface S̄ with the
metric ḡ = (f̄1(x̄1)− f̄2(x̄2))(dx̄2

1 + dx̄2
2) as before. Then the diffeomor-

phism φ : S → S̄ ((x1, x2) 7→ (x̄1, x̄2)) defined by

dx̄i =
dxi√

αfi(xi) + β
, xi = 0 ↔ x̄i = 0 , (i = 1, 2)

is a projective isomorphism, i.e., the pullback φ∗ḡ is of the form (5.5).
Thus φ maps geodesic orbits of S to geodesic orbits of S̄. The following
lemma is easy.

Lemma 5.2. If φ(x1, x2) = (x̄1, x̄2), then

φ(−x1, x2) = (−x̄1, x̄2), φ(α1/2 − x1, x2) = (ᾱ1/2 − x̄1, x̄2) ,

φ(x1,−x2) = (x̄1,−x̄2), φ(x1, α2/2 − x2) = (x̄1, ᾱ2/2 − x̄2) .

Now, suppose that A(λ) satisfies the condition (5.1), i.e.,

d2

dλ2
((b1 − λ)A(λ)) < 0 on [b2, b1] .

We choose α < 0 and β > 0 in the following way: − (b1 + β/α) > 0 is
small enough so that

max
λ∈[b2,b1]

d2

dλ2
((b1 − λ)A(λ)) < −

∣∣∣∣b1 +
β

α

∣∣∣∣ max
λ∈[b2,b1]

|A′′(λ)| .

Then the corresponding Ā(µ) satisfies the condition (5.2):

Lemma 5.3. Ā′(µ) > 0 and Ā′′(µ) < 0 on [b̄2, b̄1] .

Proof. From (5.6) we have

A(λ) = c Ā

(
λ

β(αλ + β)

)
, c =

√
β(αb1 + β)(αb2 + β) .

Differentiating this formula, we have

d2

dλ2
((αλ + β)A(λ)) = c Ā′′

(
λ

β(αλ + β)

)
1

(αλ + β)3
.

Since

(αλ + β)A(λ) = −α

(
(b1 − λ)A(λ) −

(
b1 +

β

α

)
A(λ)

)
,

it therefore follows that Ā′′(µ) < 0.
Now, putting D(λ) = (b1 − λ)A(λ). Then,

A(λ) =
D(λ) − D(b1)

b1 − λ
= −

∫ 1

0

D′(tλ + (1 − t)b1) dt ,
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and hence

A′(λ) = −
∫ 1

0

tD′′(tλ + (1 − t)b1) dt > 0 .

Since

A′(λ) = c Ā′
(

λ

β(αλ + β)

)
1

(αλ + β)2
,

we have Ā′(µ) > 0. ¤
By the proved part of the theorem, the cut locus of a point p̄ =

(s̄1, s̄2) 6= (0, 0) (0 ≤ s̄i ≤ ᾱi/4) is equal to the segment Ī of the
coordinate line x̄2 = ᾱ2/2 − s̄2 whose end points x̄1 = s̄+ and x̄1 =
s̄− + ᾱ1 (s̄1 − ᾱ1/2 < s̄− < s̄1 < s̄+ < s̄1 + ᾱ1/2) are given by∫ α2/2−s̄2

s̄2

dx̄2√
c̄ − f̄2(x̄2)

=

∫ s̄+

s̄1

dx̄1√
f̄1(x̄1) − c̄

=

∫ s̄1

s̄−

dx̄1√
f̄1(x̄1) − c̄

,

where c̄ = f̄2(s̄2).
Now, put φ−1(p̄) = p = (s1, s2) (0 ≤ si ≤ αi/4) and φ−1(Ī) =

I. Then, by Lemma 5.2, I is a segment of the coordinate line x2 =
α2/2 − s2. Since φ maps geodesics to geodesics and coordinate lines
to coordinate lines, it follows that each point on a geodesic where the
geodesic is tangent to a coordinate line is mapped to a point on the
mapped geodesic having the same property. Therefore the end points
x1 = s+, s− + α1 of I is just equal to the ones given in the theorem.

Since t2(η) is well defined as before, and since

t2(η) = t2(−η), γη (t2(η)) = γ−η (t2(−η))

without the assumption (5.1), we see that γη (t2(η)) ∈ I and γη(t) 6∈ I
for any 0 < t < t2(η). Therefore the image of Expp on

{tv(η) ∈ TpS | 0 ≤ t < t2(η), η ∈ R/2πZ}
is equal to S−I, and since φ−1(S̄−Ī) = S−I, Expp is injective there.
Thus the cut locus of p is equal to I. This completes the proof of the
theorem.

It is easy to see that A(λ) =
√

λ + a (the case of ellipsoid) satisfies
the condition (5.2).

A(λ) =
1√

b0 − λ
(b0 > b1)

is a simple example which satisfies (5.1), but does not satisfy (5.2).
Perturbations of this type are treated in [13]. Another such example is

A(λ) =
c

1 − ελ
(c > 0, ε > 0, ε is sufficiently small) ,
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which corresponds to a metric on SO(3)/SO(2) induced from a right-
invariant symmetric 2-form on SO(3) (it is sometimes called a Poisson
sphere).

6. Cut loci on surfaces of Type (C) — 1

In this section we assume that the function B(λ) (b ≤ λ < ∞, b <
0), defining the Liouville surface S of type (C) under consideration,
satisfies the following condition:

(6.1) B′(λ) > 0, B′′(λ) < 0 on [b,∞) .

Note that α1 must be equal to ∞ in this case. The main idea in this
section is to embed an arbitrary large bounded region of the surface
S into a Liouville surface of type (A) isometrically, with which the
problem is essentially reduced to the compact case.

Lemma 6.1. Suppose that a positive function B(λ) on [b,∞) (b < 0)
satisfies the condition (6.1). Put b2 = b, and take any constant b0 >
0. Then there is a constant b1 > b0 and a function A(λ) on [b2, b1]
possessing the following properties:

(i) A(λ) > 0, A′(λ) > 0, A′′(λ) < 0 on [b2, b1].
(ii) A(λ) = B(λ)

√
b1 − λ if b2 ≤ λ ≤ b0.

Proof. Take b̃0 > b0 and fix it. Since

d

dλ
B(λ)

√
b1 − λ = B′(λ)

√
b1 − λ − 1

2

B(λ)√
b1 − λ

≥ B′(b̃0)

√
b1 − b̃0 −

1

2

B(b̃0)√
b1 − b̃0

for λ ∈ [b2, b̃0], it follows that the left hand side of the above formula

is positive on [b2, b̃0], provided b1 > b̃0 being large enough. Also,

d2

dλ2
B(λ)

√
b1 − λ = B′′(λ)

√
b1 − λ − B′(λ)√

b1 − λ
− 1

4

B(λ)

(b1 − λ)3/2

is negative on [b2, b̃0].

Now, take a diffeomorphism φ : [b2, b1] → [b2, b̃0] such that

φ(λ) = λ on [b2, b0] ; φ′(λ) > 0, φ′′(λ) ≤ 0 on [b2, b1] ,

and put

A(λ) = B(φ(λ))
√

b1 − φ(λ) , b2 ≤ λ ≤ b1 .

Then A(λ) possesses the desired properties. ¤
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The following proposition is an immediate consequence of the above
lemma.

Proposition 6.1. Let 0 < b0 < b1 and A(λ) be as in Lemma 6.1. Let
S1 be the Liouville surface of type (A) constructed by b1, b2, and A(λ).
Then the open subset of S defined by |x1| < ν1(b0) is isometrically
identified to the open subset of S1 defined by |x1| < ν1(b0) in a natural
way.

Observing that the region of S1 described in the above proposition
is contained in the half of S1 expressed as |x1| < α1/4, we have the
following theorem.

Theorem 6.1. Let S be a Liouville surface of type (C) satisfying the
condition (6.1). Then the cut locus of any point p = (s1, s2) ∈ S is of
one of the following three types: (i) the empty set; (ii) an unbounded
segment of the coordinate line x2 = α2/2 − s2; (iii) the disjoint union
of two unbounded segments of the coordinate line x2 = α2/2 − s2.

Proof. Let p ∈ S and let q ∈ S be a cut point of p. If b0 > 0 is taken
large enough, then the minimal geodesics joining p and q are contained
in the subset of S defined by |x1| < ν1(b0). Thus the theorem follows
from Proposition 6.1 and Theorem 5.1. ¤

For finer description of the cut loci, we define the functions J1(c) and
J2(c) as follows:

J1(c) =

∫ ∞

−∞

dx1√
f1(x1) − c

, J2(c) =

∫ α2/2−ν2(c)

ν2(c)

dx2√
c − f2(x2)

when b < c < 0, and

J1(c) = 2

∫ ∞

ν1(c)

dx1√
f1(x1) − c

, J2(c) =

∫ α1/2

0

dx2√
c − f2(x2)

when 0 < c < ∞.
Note that the condition whether J1(c) < ∞ or J1(c) = ∞ do not

depend on c, i.e., it is the property of each surface S. For example,
J1(c) < ∞ for two-sheeted hyperboloids, and J1(c) = ∞ for elliptic
paraboloids.

Let us first consider the case where J1(c) < ∞. The following lemma
is proved in the same way as Proposition 2.

Lemma 6.2. If c < 0, then

J1(c) − J2(c) > 0,
d

dc
(J1(c) − J2(c)) < 0 .
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In particular, if c is negative and increasing, then J1(c) is increasing,
J1(c) − J2(c) is decreasing, and hence J2(c) is increasing.

For b < c < 0, we define τ(c) by the formula:

J2(c) =

∫ τ(c)

−∞

dx1√
f1(x1) − c

.

Since

J1(c) − J2(c) =

∫ ∞

τ(c)

dx1√
f1(x1) − c

,

we see that

(1) τ(c) increases when c increases;
(2) τ(c) < 0 if and only if J2(c) < 1

2
J1(c).

Also, since

lim
c→b

J2(c) = π
B(b)√
−b

, lim
c→0

(J1(c) − J2(c)) =

∫ ∞

b

B(λ) − B(0)

λ
√

λ − b
dλ ,

it follows that

τ(b) := lim
c→b

τ(c), τ(0) := lim
c→0

τ(c)

are well-defined, τ(0) > 0, and

(6.2) τ(b) < 0 if and only if 2π
B(b)√
−b

<

∫ ∞

0

B(λ) dλ

(λ − b)
√

λ

Let p ∈ S be a point represented by (x1, x2) = (s1, s2), where 0 ≤
s1 ≤ α1/4, 0 ≤ s2, and (s1, s2) 6= (0, 0). We have thus the following
theorem.

Theorem 6.2. The cut locus C(p) of the point p is as follows.

(1) If s1 ≤ τ(f2(s2)), then C(p) is the empty set.
(2) If −s1 ≤ τ(f2(s2)) < s1, then C(p) is a curve segment repre-

sented by x2 = α2/2 − s2, −∞ < x1 ≤ s̃−, where s̃− is defined
by the formula

J2(f2(s2)) =

∫ s1

s̃−

dx1√
f1(x1) − f2(s2)

.

(3) If τ(f2(s2)) < −s1, then C(p) is a disjoint union of two curve
segments represented by

x2 = α2/2 − s2, x1 ∈ (−∞, s̃−] ∪ [s̃+,∞) ,

where s̃− is as above and s̃+ is defined by the formula

J2(f2(s2)) =

∫ s̃+

s1

dx1√
f1(x1) − f2(s2)

.
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Figure 1. Division of surface by the type of cut loci

Remark 6.1. If s2 = 0 (therefore f2(s2) = 0) in the above theorem, s̃−
is defined by the formula

(J1(c) − J2(c)) |c=0 =

∫ s̃−

−∞

dx1√
f1(x1)

+

∫ ∞

s1

dx1√
f1(x1)

.

As a consequence of the above theorem, it turns out that the surface
S is divided by the curve x1 = τ(f2(x2)) (and its natural extension) into
several regions each of which contains only points having the same type
of cut loci. More precisely, there are two (major) cases of divisions can
arise, which depend on whether τ(f2(s2)) may take a negative value
or not (see Fig. 6.1). Namely, if τ(f2(s2)) ≥ 0 for any s2, then S is
divided into the two region (the left picture of Fig. 6.1); the bounded
closed region consists of points whose cut loci are empty (i.e., the set
of poles), while the cut locus of each point on the unbounded open
region is a curve segment. In the picture, the two points express the
points (x1, x2) = (0, 0) and (0, α2/2), and the line expresses the geodesic
passing through those two points.

On the other hand, if there is s2 such that τ(f2(s2)) < 0, then the
surface S is divided into three bounded regions and one unbounded
region (the right picture of Fig. 6.1). The set of poles splits into two
(closed) bounded components, and there appears a new bounded open
component between them; the cut locus of each point of this region is a
disjoint union of two unbounded curve segments. The cut loci of points
on the unbounded region (the complement of the bounded regions) are
the same as above.

For example, both two cases can occur for two-sheeted hyperboloids

S :
u2

1

a1

+
u2

2

a2

+
u2

3

a3

= 1 (a1 > 0 > a2 > a3) .

When a1 is close to 0, then S is nearly flat and the division pattern is
like the left picture, If a2 is close to 0, then S is near “the double of the
inside of hyperbola” and the division pattern is like the right picture.

Next, we shall consider the case where J1(c) = ∞. This case is
simpler than the above case. Elliptic paraboloids are contained in this
case. Let S be a Liouville surface of type (C) satisfying J1(c) = ∞
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and let p be a point on S represented by (x1, x2) = (s1, s2), s1 ≥ 0,
0 ≤ s2 ≤ α2/4, . The following theorem is easily obtained.

Theorem 6.3. The cut locus C(p) of p is as follows.

(1) If s2 6= 0, then C(p) is the disjoint union of the two curve
segments represented by

x2 = α2/2 − s2, x1 ∈ (−∞, s̃−] ∪ [s̃+,∞)

Here s̃± are the same as in the previous theorem.
(2) If s2 = 0 and s1 > 0, then C(p) is the curve segment represented

by x2 = α2/2, −∞ < x1 ≤ s̃−.
(3) If s1 = s2 = 0, then C(p) is empty.

In particular, the set of poles consists of two points.

Remark 6.2. In the above theorem, the definition of s̃− when s1 = 0 is
similar to that in the previous theorem; but since J1(c) = ∞ in this
case, we use a finite part of the integral instead.

7. Cut loci on surfaces of Type (C) — 2

In this section we show another way of getting results in the previous
section for a part of Liouville surfaces of type (C). The main idea used
here is projectively equivalent metrics discussed in §4. Let g and ḡ be
projectively equivalent metrics as in (5.5)

We take here a type(A) metric as g, and take α and β so that α < 0,
β > 0, αb1 + β ≤ 0, then ḡ represents a complete metric on the open
region

U = {(x1, x2) ∈ S | |x1| < ν1(−β/α)}
so that U becomes a Liouville surface of type(C). For example, suppose
that S is the sphere of constant curvature 1: if −β/α = b1, then U is
the flat R2; and if 0 < −β/α < b1 then U is the surface of constant
negative surface. The latter one is essentially the same as the Klein
model for two-dimensional hyperbolic space.

In the rest of this section, we only consider the case where −β/α = b1.
In this case, the corresponding data b < 0 and B(λ) for (U, ḡ) are given
by

(7.1) b =
k b2

β(αb2 + β)
, B(λ) =

√
k A

(
β2λ

k−αβλ

)
√

b1(αb2 + β)
,

where k is an arbitrary positive constant. Since the geodesic orbits of
S and U coincide, similar arguments to those in the latter half of §4
are valid. As a consequence, we have the following theorem.
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Theorem 7.1. Let S be a Liouville surface of type (A) satisfying the
condition (5.1). Then the cut locus of a point p ∈ U with respect to U
is equal to the intersection of U and the cut locus of p with respect to
S. More precisely, we have J1(c) < ∞ and Theorem 6.2 holds in this
case.

Finally we shall show that two-sheeted hyperboloids are typical ex-
amples of such surfaces.

Proposition 7.1. For the ellipsoid

(7.2) S :
u2

1

a1

+
u2

2

a2

+
u2

3

a3

= 1 (a1 > a2 > a3 > 0) ,

the Liouville surface (U, ḡ) described above is isometric to a connected
component of the two-sheeted hyperboloid

(7.3)
u2

1

c1

+
u2

2

c2

+
u2

3

c3

= 1 (c1 > 0 > c2 > c3) ,

where
(7.4)
a1 = (c1 − c2)(c1 − c3)k

′, a2 = −c3(c1 − c2)k
′, a3 = −c2(c1 − c3)k

′ ,

k′ =
(c1 − c2)(c1 − c3)

c3
1

k ,

and

(7.5) α =
−c1

(c1 − c2)(c1 − c3)
, β =

c1 − c3

c1

k .

Namely, two-sheeted hyperboloids are embedded into ellipsoids in a
projectively equivalent way.

Proof. The data of the ellipsoid (7.2) are given by

b2 = a3 − a2, b1 = a1 − a2, A(λ) =
√

λ + a2

Therefore, by (7.1) the data of (U, ḡ) are

b =
k b2

β(αb2 + β)
, B(λ) =

√
kβ(β − αa2)

−αβb1(αb2 + β)

√√√√λ + a2k
β2−αβa2

λ − k
αβ

.

Thus, if a1, a2, a3 and α, β are given as in (7.4) and (7.5) with c1, c2, c3,
then we have

b = c3 − c2, B(λ) =

√
λ − c3

λ + c1 − c3

,

which are the data for the hyperboloid (7.3). ¤
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8. Conjugate loci

In this section we investigate conjugate loci of general points for
Liouville surfaces of type (A) and (C).

8.1. Type (A). In this subsection we assume the following condition
on the positive function A(λ):

(8.1) Ã′′(λ) > 0, Ã′′′(λ) < 0 on [b2, b1] ,

where Ã(λ) = (λ − b2)A(λ). Note that Ã′(λ) > 0 , since Ã′(b2) =
A(b2) > 0 and Ã′′(λ) > 0. Note also that this condition is stronger
than the condition (5.2), since

(8.2) A(λ) =
Ã(λ) − Ã(b2)

λ − b2

=

∫ 1

0

Ã′(tλ + (1 − t)b2) dt .

Let p ∈ S be a point as in §4 represented by (x1, x2) = (s1, s2). Also,
let v(η) ∈ TpS, t1(η), t2(η), r(η) (η ∈ R/2πZ) be as before. Then we
have the similar result for conjugate loci as in the case of ellipsoids.

Theorem 8.1. r′(η) = 0 if and only if η = 0, π,±π/2. Namely,
the conjugate locus of p contains just four singular points, which are
cusps. Moreover, those singular points lie on the coordinate lines pass-
ing through the antipodal point p̃ of p.

We shall prove r′(η) 6= 0 for 0 < η < π/2 and the singularity of the
conjugate locus at η = 0 is a cusp; other cases will be similarly proved.
Let η = η0 be the unique value in (0, π/2) such that c(η) = 0. Put

Ĩ1(c) =

∫ b1

0

√
λ − b2 A(λ) dλ√
(b1 − λ)λ(λ − c)

,

Ĩ2(c) =

∫ c

b2

√
λ − b2 A(λ) dλ√

(b1 − λ)(−λ)(−λ + c)

for c < 0, and

Ĩ1(c) =

∫ b1

c

√
λ − b2 A(λ) dλ√
(b1 − λ)λ(λ − c)

,

Ĩ2(c) =

∫ 0

b2

√
λ − b2 A(λ) dλ√

(b1 − λ)(−λ)(−λ + c)

for c > 0. Then, we have the following lemma.

Lemma 8.1. (1) (∂/∂c) (Ĩ1(c) − Ĩ2(c)) > 0 for any c ∈ [b2, b1].
(2) (∂2/∂c2) (Ĩ1(c) − Ĩ2(c)) < 0 for any c ∈ [b2, b1].
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Proof. Since

Ĩ1(c) =

∫ b1

0

Ã(λ) dλ√
(b1 − λ)(λ − b2)λ(λ − c)

for c < 0, etc., the lemma is proved in the same way as Proposition 5.1.
¤

As before, let t 7→ γη(t) = (x1(t, η), x2(t, η)) be the geodesic with
γ̇η(0) = v(η). We first assume 0 < η ≤ η0 and consider the behavior of
the geodesics around the point t = r(η). The behavior of the function
t 7→ x2(t, η) is as follows: 1) Starting at x2(0, η) = s2, it increases. 2)
After reaching the maximum where f2(x2) = c(η), it turns to decrease.
3) Then, after passing through t = t2(η) where x2(t, η) = α2/2 − s2, it
will reach the point t = r(η) before it reaches the next turning point
where f(x2) = c(η). It is because the points γη(t) where f(x2) = c(η)
are mutually conjugate along the geodesic (Lemma 5.1 (2)).

Therefore, for t near r(η) we have from (4.1):

t =

∫ x1(t,η)

s1

f1(x1) − b2√
f1(x1) − c(η)

dx1 +

∫ α2/2−ν2

ν2

b2 − f2(x2)√
c(η) − f2(x2)

dx2

+

∫ α2/2−s2

x2(t,η)

b2 − f2(x2)√
c(η) − f2(x2)

dx2

= −
∫ s1+α1/2

x1(t,η)

f1(x1) − b2√
f1(x1) − c(η)

dx1 −
∫ α2/2−s2

x2(t,η)

f2(x2) − b2√
c(η) − f2(x2)

dx2

+Ĩ1(c(η)) − Ĩ2(c(η)) ,

where ν2 = ν2(c(η)). Differentiating both sides in η and putting t =
r(η), we have

(8.3)

0 = −
∫ s1+α1/2

x1(r(η),η)

f1(x1) − b2

(f1(x1) − c(η))3/2
dx1

+

∫ α2/2−s2

x2(r(η),η)

f2(x2) − b2

(c(η) − f2(x2))
3/2

dx2 + 2
∂

∂c

(
Ĩ1(c(η)) − Ĩ2(c(η))

)
.

Since each term in the second line of the above formula is positive,
it follows that

x1(r(η), η) < s1 + α1/2 .
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Now, assume that r′(η) = 0 at some η. Then, differentiating the for-
mula (8.3) by η, one obtains:
(8.4)

0 = −
∫ s1+α1/2

x1(r(η),η)

f1(x1) − b2

(f1(x1) − c(η))5/2
dx1

−
∫ α2/2−s2

x2(r(η),η)

f2(x2) − b2

(c(η) − f2(x2))
5/2

dx2 +
4

3

∂2

∂c2

(
Ĩ1(c(η)) − Ĩ2(c(η))

)
.

Since each term of the right-hand side of the above equality is negative,
it is a contradiction. Thus we conclude r′(η) 6= 0 for any η ∈ (0, η0]

Next, we shall prove r′(η) 6= 0 for η ∈ (η0, π/2). In this case, the func-
tion t 7→ x1(t, η) behaves as follows: Starting at x1(0, η), it increases; af-
ter reaching the maximum, it turns to decrease; and it passes the point
t = r(η) before it reaches the next turning point where f1(x1) = c(η).
Then, for t near r(η) we have

t = −
∫ α1/2−s1

x1(t,η)

f1(x1) − b2√
f1(x1) − c(η)

dx1

−
∫ s2+α2/2

x2(t,η)

f2(x2) − b2√
c(η) − f2(x2)

dx2 + Ĩ1(c(η)) − Ĩ2(c(η)) .

Differentiating this formula twice in η, we have r′(η) 6= 0 in the same
way as above. Thus we have proved r′(η) 6= 0 for 0 < η < π/2.

Next, we shall show that r′′(0) > 0. For 0 < η < η0 and t near r(η)
we have from (4.1): ∫ s1+α1/2

x1(t,η)

dx1√
f1(x1) − c(η)

+

∫ α2/2−s2

x2(t,η)

dx2√
c(η) − f2(x2)

= I1(c(η)) − I2(c(η)) .

Differentiating this formula in η and putting t = r(η), we obtain:

(8.5)

∫ s1+α1/2

x1(r(η),η)

dx1

(f1(x1) − c(η))3/2

−
∫ α2/2−s2

x2(r(η),η)

dx2

(c(η) − f2(x2))
3/2

= 2
∂

∂c
(I1(c(η)) − I2(c(η))) .

The second integral of the left-hand side of this formula is less than

(8.6)
α2/2 − s2 − x2(r(η), η)

(c(η) − f2(α2/2 − s2))
3/2

=
α2/2 − s2 − x2(r(η), η)

(sin η)3 (f1(s1) − f2(s2)))
3/2

.



CUT LOCI AND CONJUGATE LOCI ON LIOUVILLE SURFACES 25

Lemma 8.2.

α2/2 − s2 − x2(r(η), η) =
1

3

∂2x2

∂t∂η
(r(0), 0) r′′(0)η3 + O(η4) .

Proof. We have

d

dη
x2(r(η), η) =

∂x2

∂t
(r(η), η) r′(η) .

Since r′(0) = 0 and (∂x2/∂t)(r(0), 0) = 0, it therefore follows that

d3

dη3
x2(r(η), η)

∣∣
η=0

= 2
∂2x2

∂t∂η
(r(0), 0) r′′(0) ,

which indicates the lemma. ¤
The above lemma and the formula (8.6) implies that, if r′′(0) = 0,

then

lim
η→0

∫ α2/2−s2

x2(r(η),η)

dx2

(c(η) − f2(x2))
3/2

= 0 .

However, the first integral of the right-hand side of the equality (8.5)
being nonnegative, and the left-hand side being negative at η = 0, it is
a contradiction. Thus we have r′′(0) 6= 0. We also have

(8.7) x1(r(η), η) − x1(r(0), 0) =
1

2

∂x1

∂t
(r(0), 0) r′′(0) η2 + O(η3) .

This formula combined with the one in the above lemma indicates that
the curve η → γη(r(η)) is a cusp at η = 0. This completes the proof of
Theorem 8.1.

8.2. Type (C). In this subsection we assume the following condition
on the positive function B(λ), which is analogous to (8.1):

(8.8) B̃′′(λ) > 0, B̃′′′(λ) < 0 on [b,∞) ,

where B̃(λ) = (λ − b)B(λ).

Theorem 8.2. The conjugate locus of a point p ∈ S is not empty if and
only if its cut locus is not empty. Moreover, the singular points of the
conjugate locus coincide with the end points of the cut locus (therefore
they are at most two points), and they are cusps.

The theorem is proved in the same way as §5. We first prove the
following lemma, which is a counterpart of Lemma 6.1.

Lemma 8.3. Put b2 = b, and take any constant b0 > 0. Then there is
a constant b1 > b0 and a positive function A(λ) on [b2, b1] possessing
the following properties:

(i) Ã′′(λ) > 0, Ã′′′(λ) < 0 on [b2, b1], Ã(λ) = (λ − b2)A(λ) .
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(ii) A(λ) = B(λ)
√

b1 − λ if b2 ≤ λ ≤ b0.

Proof. Take constants b1 and b̃0 so that b0 < b̃0 < b1. Let φ(λ) be a
function on [b2, b1] such that 0 ≤ φ(λ) ≤ 1, and

φ(λ) = 1 on [b2, b0], φ(λ) = 0 on [b̃0, b1] .

Let C(λ) be a function on [b2, b1] defined by

C(λ) = φ(λ) (d3/dλ3)
(√

b1 − λB̃(λ)
)

+ (1 − φ(λ))(−ε) ,

where ε is a small positive constant, and then define A(λ) by

Ã(λ) = (λ − b2)A(λ) ,
d3

dλ3
Ã(λ) = C(λ) ,

dk

dλk
Ã(λ)

∣∣
λ=b2

=
dk

dλk

(√
b1 − λ B̃(λ)

) ∣∣
λ=b2

(k = 0, 1, 2)

Since

d2

dλ2

(√
b1 − λ B̃(λ)

)
=

√
b1 − λ B̃′′(λ) − B̃′(λ)√

b1 − λ
− 1

4

B̃(λ)

(b1 − λ)3/2
,

it is positive on [b2, b0], if b1 is taken to be sufficiently large. Also, we
have

d3

dλ3

(√
b1 − λ B̃(λ)

)
< 0

on [b2, b0]. Therefore, taking b̃0 sufficiently near b0 and taking ε > 0
sufficiently small, we have

Ã′′(λ) > 0, Ã′′′(λ) < 0 on [b2, b1] .

¤
Thus, Theorem 8.2 follows from the above lemma, Proposition 6.1,

and Theorem 8.1. It is directly verified that B(λ) =
√

λ + a1, the case
of elliptic paraboloid, satisfies the condition (8.8). The case of two-
sheeted hyperboloid also satisfies (8.8), which is a consequence of the
following general result.

Proposition 8.1. If A(λ) satisfies the condition (8.1), then the func-
tion B(λ) defined by the formula (7.1) satisfies (8.8).

Proof. From (7.1) we have

(8.9) B̃(λ) = cÃ(µ)(λ + e),

where c is a positive constant and

µ =
β2λ

k − αβλ
, e =

k

−αβ
.
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Then we have

B̃′′(λ) = cÃ′′(µ)

(
dµ

dλ

)2

(λ + e) ,

B̃′′′(λ) = cÃ′′′(µ)

(
dµ

dλ

)3

(λ + e) + c′Ã′′(λ)(λ + e)−4 ,

where c′ < 0. Therefore the proposition follows. ¤
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