28 research outputs found
Efecto de la preparación mediante maceración con enzima asistida comercial sobre el rendimiento, la calidad, y la bioactividad de aceite esencial de residuos de semillas de zanahoria (Daucus carota L.)
Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from Mucor circinelloides, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increased by approximately 48%. The main constituent compounds in the oil are: carotol (OeA: 40.80%–OeB: 46.17%), daucol (OeA: 7.35%–OeB: 6.22%), sabinene (OeA: 5.12%–OeB: 6.13%), alpha-pinene (OeA: 4.24%–OeB: 5.11%) and geranyl acetate (OeA: 4.50%–OeB: 3.68%). As compared to the control sample, the essential oil obtained from enzyme-pretreated carrot seeds has the same biological activity against Bacillus subtilis and Candida sp., lower activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and higher activity against Aspergillus niger and Penicillium expansum.Ocho preparados enzimáticos fueron seleccionados con el fin de maximizar el rendimiento de aceites esenciales de semillas de zanahoria. Tres de los ocho preparados de las enzimas investigadas, lipasa de Mucor circinelloides, Xpect® pectinasa y Esperase® proteasa, influyeron de manera significativa sobre la cantidad de aceite esencial obtenido, siendo Esperase® el más eficaz. El método de Taguchi se aplicó para optimizar las condiciones del procesamiento para esta última. Bajo las condiciones óptimas, el rendimiento de los aceite esenciales aumentó aproximadamente un 48%. Los principales compuestos constituyentes del aceite son: carotol (OEA: 40.80%–OeB: 46,17%), ducol (OEA: 7,35%–OeB: 6,22%), sabineno (OEA: 5,12%–OeB: 6,13%), alfa-pineno (OEA: 4,24%– OeB: 5,11%) y acetato de geranilo (OEA: 4,50%–OeB: 3,68%). En comparación con la muestra control, el aceite esencial obtenido a partir de las semillas de zanahoria mediante enzima-pretratada tiene la misma actividad biológica frente a Bacillus subtilis y Candida sp., menor actividad frente a Staphylococcus aureus, Escherichia coli, y Pseudomonas aeruginosa, y una mayor actividad contra Aspergillus niger y Penicillium expansum
The effect of commercial enzyme preparation-assisted maceration on the yield, quality, and bioactivity of essential oil from waste carrot seeds (<em>Daucus carota</em> L.)
Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from <em>Mucor circinelloides</em>, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increased by approximately 48%. The main constituent compounds in the oil are: carotol (OeA: 40.80%–OeB: 46.17%), daucol (OeA: 7.35%–OeB: 6.22%), sabinene (OeA: 5.12%–OeB: 6.13%), alpha-pinene (OeA: 4.24%–OeB: 5.11%) and geranyl acetate (OeA: 4.50%–OeB: 3.68%). As compared to the control sample, the essential oil obtained from enzyme-pretreated carrot seeds has the same biological activity against <em>Bacillus subtilis</em> and <em>Candida</em> sp., lower activity against <em>Staphylococcus aureus, Escherichia coli</em>, and <em>Pseudomonas aeruginosa</em>, and higher activity against <em>Aspergillus niger</em> and <em>Penicillium expansum</em>.<br><br>Ocho preparados enzimáticos fueron seleccionados con el fin de maximizar el rendimiento de aceites esenciales de semillas de zanahoria. Tres de los ocho preparados de las enzimas investigadas, lipasa de Mucor circinelloides, Xpect® pectinasa y Esperase® proteasa, influyeron de manera significativa sobre la cantidad de aceite esencial obtenido, siendo Esperase® el más eficaz. El método de Taguchi se aplicó para optimizar las condiciones del procesamiento para esta última. Bajo las condiciones óptimas, el rendimiento de los aceite esenciales aumentó aproximadamente un 48%. Los principales compuestos constituyentes del aceite son: carotol (OEA: 40.80%–OeB: 46,17%), ducol (OEA: 7,35%–OeB: 6,22%), sabineno (OEA: 5,12%–OeB: 6,13%), alfa-pineno (OEA: 4,24%– OeB: 5,11%) y acetato de geranilo (OEA: 4,50%–OeB: 3,68%). En comparación con la muestra control, el aceite esencial obtenido a partir de las semillas de zanahoria mediante enzima-pretratada tiene la misma actividad biológica frente a Bacillus subtilis y Candida sp., menor actividad frente a Staphylococcus aureus, Escherichia coli, y Pseudomonas aeruginosa, y una mayor actividad contra Aspergillus niger y Penicillium expansum
Sterowanie zrzutem kapsuły wodnej do wybuchowego wytwarzania aerozolu wodnego
This article presents the structure of the system which makes possible the release of a water capsule from the helicopter and the detonation of water situated inside the capsule at the defined height over the target (the place of fire) in order to cover the land of a adequate area with the produced aerosol. The moment of the release and detonation is defined on the basis of the current velocity of a flight and the position of the capsule.Artykuł prezentuje budowę systemu, który umożliwia automatyczne uwolnienie ze śmigłowca kapsuły wodnej i zdetonowanie ładunku umieszczonego wewnątrz niej na określonej wysokości nad celem (miejscem pożaru) tak, aby wytworzony aerozol pokrył teren o wymaganej powierzchni. Moment uwolnienia, a także detonacji jest określany na podstawie aktualnej prędkości lotu oraz pozycji kapsuły
Metrological Analysis of Precision of the System of Delivering a Water Capsule for Explosive Production of Water Aerosol
In this paper precision of the system controlling delivery by a helicopter of a water capsule designed for extinguishing large scale fires is analysed. The analysis was performed using a numerical method of distribution propagation (the Monte Carlo method) supplemented with results of application of the uncertainty propagation method. In addition, the optimum conditions for the airdrop are determined to ensure achieving the maximum area covered by the water capsule with simultaneous preserving the precision level necessary for efficient fire extinguishing
Investigation of characteristics of shock-waves produced by water bag explosion
W artykule przedstawiono wyniki badań parametrów fali uderzeniowej powstającej przy wytwarzaniu aerozolu wodnego metodą wybuchową.The paper presents results of investigations of parameters of the shock-wave generated in the process of explosive formation of water-spray. The spray was produced by exploding a charge located inside a hag fitled with water (called shortly water-bag). The measurements have been carried on for three kinds of explosive materials (Emulinit, Saletrol and Plastic), for three sizes of the water-bag (600 dm3, 1200 dm3 and 1500 dm3) and for explosion energies varying from 4 MJ to 20 MJ. The experimental setup consisted of the water-bag hung 10 m over the ground, of a fast video-camera registering expansion of the water-spray cloud, and of piezoelectric sensors placed along the direction of the shock-wave propagation that were coupled on-line with a registering-controlling computer system. The objective of the investigations consisted in measuring the shock-wave propagation velocity and pressure variation as well as determining expansion velocity of the cloud as a function of its diameter for various explosive energies, water-bag sizes and explosive material used. The measurements served as a test for verification of theoretical hypotheses concerning explosive production and expansion of the water-spray cloud. The tests allowed to optimize the water-bag size, the kind of explosive material and the explosion energy from the point of view of maximizing cloud's diameter and minimizing droplets' radii