94 research outputs found

    Incidence of the Tomonaga-Luttinger liquid state on the NMR spin lattice relaxation in Carbon Nanotubes

    Full text link
    We report 13C nuclear magnetic resonance measurements on single wall carbon nanotube (SWCNT) bundles. The temperature dependence of the nuclear spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected for a Tomonage-Luttinger liquid (TLL). The observed exponent is smaller than that expected for the two band TLL model. A departure from the power law is observed only at low T, where thermal and electronic Zeeman energy merge. Extrapolation to zero magnetic field indicates gapless spin excitations. The wide T range on which power-law behavior is observed suggests that SWCNT is so far the best realization of a one-dimensional quantum metal.Comment: 5 pages, 4 figure

    Stabilization of carbon nanotubes by filling with inner tubes: An optical spectroscopy study on double-walled carbon nanotubes under hydrostatic pressure

    Full text link
    The stabilization of carbon nanotubes via the filling with inner tubes is demonstrated by probing the optical transitions in double-walled carbon nanotube bundles under hydrostatic pressure with optical spectroscopy. Double-walled carbon nanotube films were prepared from fullerene peapods and characterized by HRTEM and optical spectroscopy. In comparison to single-walled carbon nanotubes, the pressure-induced redshifts of the optical transitions in the outer tubes are significantly smaller below \sim10 GPa, demonstrating the enhanced mechanical stability due to the inner tube already at low pressures. Anomalies at the critical pressure Pd_d\approx12 GPa signal the onset of the pressure-induced deformation of the tubular cross-sections. The value of Pd_d is in very good agreement with theoretical predictions of the pressure-induced structural transitions in double-walled carbon nanotube bundles with similar average diameters.Comment: 6 pages, 4 figures; to appear in Phys. Rev.

    Synthesis and Characterization of Gadolinium Oxide Nanocrystallites

    Get PDF
    Lanthanide oxide nanocrystallites have gained a lot of attention due to their diverse use for potential applications and for this reason it is very important to find a suitable preparation method that would be economically inexpensive and easy to implement. The chapter describes the preparation of gadolinium oxide nanocrystallites (nano Gd2O3) through thermal decomposition of a complex formed by Gd(NO3)3·6 H2O and glycine. Decomposition of the complex occurs at temperatures about (250 ± 10)°C. An ultrafine white powder of the gadolinium oxide nanocrystallites was obtained. The resulting nanocrystallites were characterized by X‐ray powder diffraction analysis, which revealed the size of the gadolinium oxide nanocrystallites equal to 10 nm. The morphology of the gadolinium oxide nanocrystallites was examined by scanning electron microscopy. The elemental composition of the product was confirmed by EDS analysis

    Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene

    Full text link
    We have measured a strictly linear pi-plasmon dispersion along the axis of individualized single wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single wall carbon nanotubes. Comparative ab initio studies on graphene based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects (LFE) cause a mixing of electronic transitions, including the 'Dirac cone', resulting in the observed linear dispersion

    CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.

    Get PDF
    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.This material is based upon work supported by the National Science Foundation under Grant No. 1007793 and was also supported by Airbus group, Boeing, Embraer, Lockheed Martin, Saab AB, Hexcel, and TohoTenax through MIT’s Nano- Engineered Composite aerospace STructures (NECST) Consortium. This research was supported (in part) by the U.S. Army Research Office under Contract W911NF-13-D-0001. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. This work was carried out in part through the use of MIT Microsystems Technology Laboratories. Stephan Hofmann acknowledges funding from EPSRC under grant EP/H047565/1. Piran Kidambi acknowledges the Lindemann Trust Fellowship.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja509872y

    Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes.

    Get PDF
    Thermal decomposition of Co-doped calcium tartrate in an inert atmosphere or air was studied using thermogravimetric analysis and X-ray absorption fine structure (XAFS) spectroscopy. It was shown that the powder substance containing 4 at.% of cobalt completely decomposes within 650-730 °C, depending on the environment, and the formation of Co clusters does not proceed before 470 °C. The products of decomposition were characterized by transmission electron microscopy, XAFS, and X-ray photoelectron spectroscopy. Surfaceoxidized Co metal nanoparticles as large as ∼5.6 ( 1.2 nm were found to form in an inert atmosphere, while the annealing in air led to a wide distribution of diameters of the nanoparticles, with the largest nanoparticles (30-50 nm) mainly present as a Co3O4 phase. It was found that the former nanoparticles catalyze the growth of CNTs from alcohol while a reducing atmosphere is required for activation of the latter nanoparticles. We propose the scheme of formation of CaO-supported catalyst from Co-doped tartrate, depending on the thermal decomposition conditions
    corecore