33 research outputs found

    Long-term ecological changes in Mediterranean mountain lakes linked to recent climate change and Saharan dust deposition revealed by diatom analyses

    Get PDF
    Anthropogenic climate change and the recent increase of Saharan dust deposition has had substantial effects on Mediterranean alpine regions. We examined changes in diatom assemblage composition over the past ~180 years from high-resolution, dated sediment cores retrieved from six remote lakes in the Sierra Nevada Mountains of Southern Spain. In all lakes, changes in diatom composition began over a century ago, but were more pronounced after ~1970 CE, concurrent with trends in rising regional air temperature, declining precipitation, and increased Saharan dust deposition. Temperature was identified as the main predictor of diatom assemblage changes, whereas both Saharan dust deposition drivers, the Sahel precipitation index and the winter North Atlantic Oscillation, were secondary explanatory variables. Diatom compositional shifts are indicative of lake alkalinization (linked to heightened evapoconcentration and an increase in calcium-rich Saharan dust input) and reduced lake water turbulence (linked to lower water levels and reduced inflows to the lakes). Moreover, decreases in epiphytic diatom species were indicative of increasing aridity and the drying of catchment meadows. Our results support the conclusions of previous chlorophyll-a and cladoceran-based paleolimnological analyses of these same dated sedimentary records which show a regional-scale response to climate change and Saharan dust deposition in Sierra Nevada lakes and their catchments during the 20th century. However, diatom assemblages seem to respond to different atmospheric and climate-related effects than cladoceran assemblages and chlorophyll-a concentrations. The recent impact of climate change and atmospheric Saharan deposition on lake biota assemblages and water chemistry, as well as catchment water availability, will have important implications for the valuable ecosystem services that the Sierra Nevada provides

    Holocene development and anthropogenic disturbance of a shallow lake system in Central Ireland recorded by diatoms

    No full text
    Three cores from two connected lakes in Central Ireland (Lough Kinale and Derragh Lough) were investigated using diatom analysis to establish the Holocene development of the lacustrine system, any local variations within the lakes and any anthropogenic influences. The study area was situated in a lowland location and the lakes were shallow, unstratified and interconnected. Litho-and bio-stratigraphical analyses of the lake cores and deposits beneath a mire separating the two lakes showed the changing spatial configuration of the lake system in the early Holocene and the separation of the initial lake into three basins (cf. lacustrine cells) and finally into two interlinked lakes. The evolution of the lake system is conceptualised as the development of distinct lacustrine cells, and its sediments have recorded changes in the physical (geography, depth and sedimentation) and chemical (water chemistry) properties of the lakes inferred through diatom analyses. The longest sequence, from the early Holocene, records fluctuating lake levels and these are correlated with geomorphological mapping and surveying of palaeoshorelines. The diatom assemblages of the upper 2 m of the three cores, covering approximately the last 2000–3000 radiocarbon years show considerable difference in trophic status and life-form categories. This is related to the location of the cores in the lake and also the distance from human settlement with particular reference to proximity to crannog (artificial island) construction and use. The most central core from the deepest part of Lough Kinale has the least representation of the human settlement and agricultural activity in the catchment and on the fringes of the lake, whereas the core taken from the edge of a crannog is able to identify when construction and use of the crannog occurred. The local nature of the palaeoecological response to human activity due to incomplete water mixing has the advantage of allowing the lake sediment cores to be used to determine spatially discrete settlement patterns
    corecore