18 research outputs found
Targeting the tumor microenvironment with fluorescence-activatable bispecific endoglin/fibroblast activation protein targeting liposomes
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.Deutsche Forschungsgemeinschaf
Rapid target binding and cargo release of activatable liposomes bearing HER2 and FAP single-chain antibody fragments reveal potentials for image-guided delivery to tumors
Liposomes represent suitable tools for the diagnosis and treatment of a variety of diseases, including cancers. To study the role of the human epidermal growth factor receptor 2 (HER2) as target in cancer imaging and image-guided deliveries, liposomes were encapsulated with an intrinsically quenched concentration of a near-infrared fluorescent dye in their aqueous interior. This resulted in quenched liposomes (termed LipQ), that were fluorescent exclusively upon degradation, dye release, and activation. The liposomes carried an always-on green fluorescent phospholipid in the lipid layer to enable tracking of intact liposomes. Additionally, they were functionalized with single-chain antibody fragments directed to fibroblast activation protein (FAP), a marker of stromal fibroblasts of most epithelial cancers, and to HER2, whose overexpression in 20-30% of all breast cancers and many other cancer types is associated with a poor treatment outcome and relapse. We show that both monospecific (HER2-IL) and bispecific (Bi-FAP/HER2-IL) formulations are quenched and undergo HER2-dependent rapid uptake and cargo release in cultured target cells and tumor models in mice. Thereby, tumor fluorescence was retained in whole-body NIRF imaging for 32-48 h post-injection. Opposed to cell culture studies, Bi-FAP/HER2-IL-based live confocal microscopy of a high HER2-expressing tumor revealed nuclear delivery of the encapsulated dye. Thus, the liposomes have potentials for image-guided nuclear delivery of therapeutics, and also for intraoperative delineation of tumors, metastasis, and tumor margins
SophieServer: The Future of Reading
Abstract Sophie is an easy-to-use authoring tool that enables its users to combine various media into a new kind of book. With SophieServer, an extension to Sophie, it is now possible to share Sophie Books with readers all over the world. Readers can share their knowledge and discuss their insights with the community. For that, virtual book-clubs offer guided tours that can be prepared, attended, commented, and evolved online by interested members. Alternatively, readers can just enjoy Sophie books, reading them within their Web browser
Dataset on FAP-induced emergence of spontaneous metastases and on the preparation of activatable FAP-targeting immunoliposomes to detect the metastases
The underlying data demonstrates that fibroblast activation protein (FAP) paves the way for fibrosarcoma cells, which require the proteolysis of the extracellular matrix (ECM) and basement membranes to intravasate from implanted subcutaneous primary tumors into blood vessels, be transported to distant organs where they extravasate from the blood vessels, reattach and proliferate to metastases. The data additionally shows that FAP, when overexpressed on fibrosarcoma cells induces their invasion and formation of spontaneous metastases in multiple organs, particularly after subcutaneous co-implantation of the FAP-expressing and wildtype fibrosarcoma. The raw and processed data presented herein is related to a research article entitled “Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases” (F.L. Tansi, R. Rüger, C. Böhm, R.E. Kontermann, U.K. Teichgraeber, A. Fahr, I. Hilger, 2016) [1]. Furthermore, evidence for the detection of FAP-expressing tumor cells and cells of the tumor stroma by activatable FAP-targeting liposomes is presented in this dataset
Dataset on the role of endoglin expression on melanin production in murine melanoma and on the influence of melanin on optical imaging
The underlying data demonstrates that the expression of endoglin in murine melanoma cells influences melanin production in the cells. Also, the data shows that melanin production is further increased when the cells are subcutaneously implanted in mice models and that the high melanin production prevents detection of the cells by fluorescence imaging. The processed data presented herein is related to a research article by Tansi et al. (2018) entitled “Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes”
Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery