794 research outputs found

    Bound States of Conical Singularities in Graphene-Based Topological Insulators

    Full text link
    We investigate the electronic structure induced by wedge-disclinations (conical singularities) in a honeycomb lattice model realizing Chern numbers γ=±1\gamma=\pm 1. We establish a correspondence between the bound state of (i) an isolated Φ0/2\Phi_0/2-flux, (ii) an isolated pentagon (n=1)(n=1) or heptagon (n=−1)(n=-1) defect with an external flux of magnitude nγΦ0/4n\gamma \Phi_0/4 through the center and (iii) an isolated square or octagon defect without external flux, where Φ0=h/e\Phi_0=h/e is the flux quantum. Due to the above correspondence, the existence of isolated electronic states bound to the disclinations is robust against various perturbations. These results are also generalized to graphene-based time-reversal invariant topological insulators.Comment: 5+4 pages, 4+3 figures, revised introduction and Fig.

    Dimensional reduction by pressure in the magnetic framework material CuF2_{2}(D2_{2}O)2_{2}pyz: from spin-wave to spinon excitations

    Full text link
    Metal organic magnets have enormous potential to host a variety of electronic and magnetic phases that originate from a strong interplay between the spin, orbital and lattice degrees of freedom. We control this interplay in the quantum magnet CuF2_2(D2_2O)2_2pyz by using high pressure to drive the system through a structural and magnetic phase transition. Using neutron scattering, we show that the low pressure state, which hosts a two-dimensional square lattice with spin-wave excitations and a dominant exchange coupling of 0.89 meV, transforms at high pressure into a one-dimensional spin-chain hallmarked by a spinon continuum and a reduced exchange interaction of 0.43 meV. This direct microscopic observation of a magnetic dimensional crossover as a function of pressure opens up new possibilities for studying the evolution of fractionalised excitations in low dimensional quantum magnets and eventually pressure-controlled metal--insulator transitions

    Ehrenfest relations and magnetoelastic effects in field-induced ordered phases

    Full text link
    Magnetoelastic properties in field-induced magnetic ordered phases are studied theoretically based on a Ginzburg-Landau theory. A critical field for the field-induced ordered phase is obtained as a function of temperature and pressure, which determine the phase diagram. It is found that magnetic field dependence of elastic constant decreases discontinuously at the critical field, Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We found an Ehrenfest relation between the field dependence of the elastic constant and the pressure dependence of critical field. Our theory provides the theoretical form for magnetoelastic properties in field- and pressure-induced ordered phases.Comment: 7 pages, 3 figure

    A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate

    Get PDF
    Differential scanning calorimetry (DSC) was used to study thermal transitions of the following whey proteins and enzymes in milk ultrafiltrate solution: β-lactoglobulin, α-lactalbumin, serum albumin, γ-globulin, apo- and Fe-lactoferrin, lysozyme, ribonuclease, α-chymotrypsin and xanthine oxidase. Denaturation enthalpies (ΔHD), denaturation temperatures (TD) and the half width of the denaturation peaks in DSC thermograms (ΔT½D) were determined and the degree of renaturation was estimated by rescanning previously denatured samples. A fair correlation between the results obtained by DSC and other more classical methods was found in general. However, for some proteins (α-lactalbumin, lysozyme, ribonuclease and xanthine oxidase), which have so far been considered relatively thermostable, calorimetry reveals conformational changes starting at temperatures as low as about 45 °C. In these cases thermostability observed after heat treatment of milk should be interpreted in terms of renaturation and not of high temperatures of denaturatio

    Slave-boson mean-field theory of the Mott transition in the two-band Hubbard model

    Get PDF
    Abstract.: We apply the slave-boson approach of Kotliar and Ruckenstein to the two-band Hubbard model with an Ising like Hund's rule coupling and bands of different widths. On the mean-field level of this approach we investigate the Mott transition and observe both separate and joint transitions of the two bands depending on the choice of the inter- and intra-orbital Coulomb interaction parameters. The mean-field calculations allow for a simple physical interpretation and can confirm several aspects of previous work. Beside the case of two individually half-filled bands we also examine what happens if the original metallic bands possess fractional filling either due to finite doping or due to a crystal field which relatively shifts the atomic energy levels of the two orbitals. For appropriate values of the interaction and of the crystal field we can observe a band insulating state and a ferromagnetic meta

    Quantum and classical criticality in a dimerized quantum antiferromagnet

    Get PDF
    A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal ("Higgs") mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.Comment: 6 pages, 4 figures. Original version, published version available from Nature Physics websit

    No clear trends in expatriation of non-human primate research from ­Switzerland between 2004 and 2017

    Full text link
    Animal experimentation is commonly practiced in scientific research worldwide. However, there are no globally accepted standards for regulating the ethical boundaries and accepted practices for animal experimentation. Large differences exist between countries. A report suggested that some researchers, especially from countries with more stringent animal experimentation regulations, may be relocating experimental research to countries with less stringent regulations. We followed a systematic literature review approach to identity publications and determine whether there is an increasing trend in expatriation of non-human primate experimentation by researchers based in Switzerland. We used the Projects People Publications database, which contains projects funded by the Swiss National Science Foundation, to identify researchers conducting experiments using non-human primates. This list of names, together with terms referring to non-human primates were used to search the Web of Science. Publications without an author affiliated to a Swiss institution, no living or only with free non-human primates, and non-original research were excluded. For each publication, we recorded the place of experimentation, funding source, number of animals, species and the statement of ethical approval. We retained 120 publications, involving more than 2,429 non-human primates. Macaca mulatta and Macaca fascicularis were the most common species. We could not confirm an increasing trend in expatriation of non-human primate experimentation outside of Switzerland. Over time, publications appeared to report the ethical approval number more consistently. These results should be interpreted with caution because the sample included only studies that were: 1) published and 2) reported in the Web of Science. Consequently, studies with insignificant results may have been excluded because these studies are rarely published, and studies of poor quality may have been excluded because they are often published in lower quality journals, not indexed by the Web of Science

    The calmodulin fraction responsible for contraction in an intestinal smooth muscle

    Get PDF
    AbstractFreeze-dried fibers of smooth muscle from Taenia coli were used to determine the concentration of calmodulin responsible for contraction. About 10% of the total intracellular calmodulin (12.6 μmol/kg wet wt) is directly involved in initiation of smooth muscle contraction
    • …
    corecore