2 research outputs found

    Cardiovascular Health Does Not Change Following High-Intensity Interval Training in Women with Polycystic Ovary Syndrome

    Get PDF
    Introduction: polycystic ovary syndrome (PCOS) is associated with cardiovascular disease (CVD) risk factors. First-line therapy for PCOS is lifestyle changes including exercise. We compared CVD risk factors between women with and without PCOS and examined the responses to high-intensity interval training (HIIT). Methods: women with PCOS were randomized to HIIT (n = 41) or a non-exercise control group (n = 23) for 16 weeks. Women without PCOS (n = 15) were age- and BMI-matched to participants with PCOS and completed 16 weeks of HIIT. CVD markers included blood pressure, heart rate, flow-mediated endothelial function (FMD), carotid intima-media thickness (IMT), concentrations of lipids, glucose, insulin, and matrix metalloproteinase-9 (MMP-9). Results: resting heart rate was higher in women with PCOS than without PCOS (p =.011) and was reduced after HIIT in women with PCOS (−2.8 beats/min, 95% CI: −5.4, −0.2, p = 0.037). FMD was not significantly different between women with PCOS (5.5%, SD 4.1) and those without PCOS (8.2%, SD 3.9) at baseline. HIIT reduced time-to-peak dilatation of the brachial artery in women with PCOS compared with women without PCOS (−55 sec, 95% CI: −96, −13 p = 0.012). Conclusions: we found little difference in CVD risk factors between women with and without PCOS at baseline, but some indications of endothelial dysfunction in women with PCOS

    Exercised blood plasma promotes hippocampal neurogenesis in the Alzheimer's disease rat brain

    No full text
    Background: Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer's disease (AD). These beneficial effects may be partly mediated by blood-borne factors. Here we used an in vitro model of AD to investigate effects of blood plasma from exercise-trained donors on neuronal viability, and an in vivo rat model of AD to test whether such plasma impacts cognitive function, amyloid pathology, and neurogenesis. Methods: Mouse hippocampal neuronal cells were exposed to AD-like stress using amyloid-β and treated with plasma collected from human male donors 3 h after a single bout of high-intensity exercise. For in vivo studies, blood was collected from exercise-trained young male Wistar rats (high-intensity intervals 5 days/week for 6 weeks). Transgenic AD rats (McGill-R-Thy1-APP) were injected 5 times/fortnight for 6 weeks at 2 months or 5 months of age with either (a) plasma from the exercise-trained rats, (b) plasma from sedentary rats, or (c) saline. Cognitive function, amyloid plaque pathology, and neurogenesis were assessed. The plasma used for the treatment was analyzed for 23 cytokines. Results: Plasma from exercised donors enhanced cell viability by 44.1% (p = 0.032) and reduced atrophy by 50.0% (p < 0.001) in amyloid-β-treated cells. In vivo exercised plasma treatment did not alter cognitive function or amyloid plaque pathology but did increase hippocampal neurogenesis by ∼3 fold, regardless of pathological stage, when compared to saline-treated rats. Concentrations of 7 cytokines were significantly reduced in exercised plasma compared to sedentary plasma. Conclusion: Our proof-of-concept study demonstrates that plasma from exercise-trained donors can protect neuronal cells in culture and promote adult hippocampal neurogenesis in the AD rat brain. This effect may be partly due to reduced pro-inflammatory signaling molecules in exercised plasma
    corecore