10 research outputs found

    Changes in thermal nociceptive responses in dairy cows following experimentally induced Escherichia coli mastitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS) in dairy cows with experimentally induced <it>Escherichia coli </it>mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables.</p> <p>Methods</p> <p>Seven Danish Holstein-Friesian cows were kept in tie-stalls, where the <it>E. coli </it>associated mastitis was induced and laser stimulations were conducted. Measurements of rectal temperature, somatic cell counts, white blood cell counts and <it>E. coli </it>counts were conducted. Furthermore, scores were given for anorexia, local udder inflammation and milk appearance to quantify the local and systemic disease response. In order to quantify the nociceptive threshold, behavioral responses toward cutaneous NLS applied to six skin areas at the tarsus/metatarsus and udder hind quarters were registered at evening milking on day 0 (control) and days 1, 2, 3, 6 and 10 after experimental induction of mastitis.</p> <p>Results</p> <p>All clinical and paraclinical variables were affected by the induced mastitis. All cows were clinically ill on days 1 and 2. The cows responded behaviorally toward the NLS. For hind leg stimulation, the proportion of cows responding by stepping was higher on day 0 than days 3 and 6, and the frequency of leg movements after laser stimulation tended to decrease on day 1 compared to the other days. After udder stimulation, the proportion of cows responding by stepping was higher on day 1 than on all other days of testing. Significant correlations between the clinical and paraclinical variables of disease and the behavioral responses toward nociceptive stimulation were found.</p> <p>Conclusions</p> <p>Changes in behavioral responses coincide with peaks in local and systemic signs of E. coli mastitis. During the acute stage of E. coli mastitis nociceptive thermal stimulation on hind leg and mammary glands results in decreased behavioral responses toward nociceptive stimulation, which might be interpreted as hypoalgesia.</p

    Replication and Clearance of Respiratory Syncytial Virus : Apoptosis Is an Important Pathway of Virus Clearance after Experimental Infection with Bovine Respiratory Syncytial Virus

    No full text
    Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus and the infections with human respiratory syncytial virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared by neutrophils whereas apoptosis was an important way of clearance of BRSV-infected epithelial cells. Neighboring cells, which probably were epithelial cells, phagocytized the BRSV-infected apoptotic cells. The number of both CD4(+) and CD8+ T cells increased during the course of infection, but the T cells were not found between the epithelial cells of the bronchi up until apoptosis was no longer detected, thus in the bronchi there was no indication of direct contact-dependent T-cell-mediated cytotoxicity in the primary infection

    Quantotypic Properties of QconCAT Peptides Targeting Bovine Host Response to <i>Streptococcus uberis</i>

    No full text
    Mammalian host response to pathogens is associated with fluctuations in high abundant proteins in body fluids as well as in regulation of proteins expressed in relatively low copy numbers like cytokines secreted from immune cells and endothelium. Hence, efficient monitoring of proteins associated with host response to pathogens remains a challenging task. In this paper, we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope-labeled variants of two concordant proteotypic peptides from each of these 20 proteins were obtained through the QconCAT method. We present the quantotypic properties of these 40 proteotypic peptides and discuss their application to research in host–pathogen interactions. Our results clearly demonstrate a robust monitoring of 17 targeted host-response proteins. Twelve of these were readily quantified in a simple extraction of mammary gland tissues, while the expression levels of the remaining proteins were too low for direct and stable quantification; hence, their accurate quantification requires further fractionation of mammary gland tissues

    Quantotypic Properties of QconCAT Peptides Targeting Bovine Host Response to <i>Streptococcus uberis</i>

    No full text
    Mammalian host response to pathogens is associated with fluctuations in high abundant proteins in body fluids as well as in regulation of proteins expressed in relatively low copy numbers like cytokines secreted from immune cells and endothelium. Hence, efficient monitoring of proteins associated with host response to pathogens remains a challenging task. In this paper, we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope-labeled variants of two concordant proteotypic peptides from each of these 20 proteins were obtained through the QconCAT method. We present the quantotypic properties of these 40 proteotypic peptides and discuss their application to research in host–pathogen interactions. Our results clearly demonstrate a robust monitoring of 17 targeted host-response proteins. Twelve of these were readily quantified in a simple extraction of mammary gland tissues, while the expression levels of the remaining proteins were too low for direct and stable quantification; hence, their accurate quantification requires further fractionation of mammary gland tissues
    corecore