4 research outputs found

    A computational iterative design method for bend-twist deformation in composite ship propeller blades for thrusters

    Get PDF
    This study investigates the feasibility of utilising common composite material layup techniques in ship propeller blade design to achieve an automatic pitch adjustment through bending-induced twist deformation. A comprehensive design approach, including various reinforcement materials and arrangements, was employed to attain the desired foil pitching, while minimising other undesirable deformation modes. The design process involved iterative computational analysis using finite element analysis and a deformation mode analysis based on foil shape parameters. The research showed that the proposed design approach effectively found options to improve the desired foil parameter pitch, while minimising undesirable deformation modes such as blade deflection and foil shape change. Furthermore, the proposed blade design was tested in thruster steering operational conditions and was found to have a pitch change well matched, potentially countering some changes in fluid flow. When compared to Kumar and Wurm’s design, which only focused on the angular orientation of glass reinforcement, the proposed design was found to outperform the twisting by achieving the same twist for a blade half the length. This study provides valuable insights into the utilisation of composite materials in ship propeller design and highlights the potential for further improvement through a composite engineering design approach.publishedVersio

    Experimental verification of the elastic response in a numeric model of a composite propeller blade with bend twist deformation

    Get PDF
    Adaptive composite propeller blades showing bend twist behaviour have received increasing interest from hydrodynamic and structural engineers. When exposed to periodic loading conditions, such propellers can be designed to have higher energy efficiency and emit less noise and vibration than conventional propellers. This work describes a method to produce an adaptive composite propeller blade and how a point load experiment can verify the predicted elastic response in the blade. A 600 mm-long hollow full-size blade was built and statically tested in the laboratory. Finite element modelling predicted a pitch angle change under operational load variable loads of 0.55°, a geometric change that notably compensates for the load cases. In the laboratory experiment, the blade was loaded at two points with increasing magnitude. The elastic response was measured with digital image correlation and strain gauges. Model predictions and experimental measurements showed the same deformation patterns, and the twist angle agreed within 0.01 degrees, demonstrating that such propellers can be successfully built and modelled by finite element analysis

    Experimental verification of the elastic response in a numeric model of a composite propeller blade with bend twist deformation

    No full text
    Adaptive composite propeller blades showing bend twist behaviour have received increasing interest from hydrodynamic and structural engineers. When exposed to periodic loading conditions, such propellers can be designed to have higher energy efficiency and emit less noise and vibration than conventional propellers. This work describes a method to produce an adaptive composite propeller blade and how a point load experiment can verify the predicted elastic response in the blade. A 600 mm-long hollow full-size blade was built and statically tested in the laboratory. Finite element modelling predicted a pitch angle change under operational load variable loads of 0.55°, a geometric change that notably compensates for the load cases. In the laboratory experiment, the blade was loaded at two points with increasing magnitude. The elastic response was measured with digital image correlation and strain gauges. Model predictions and experimental measurements showed the same deformation patterns, and the twist angle agreed within 0.01 degrees, demonstrating that such propellers can be successfully built and modelled by finite element analysis

    Experimental verification of the elastic response in a numeric model of a composite propeller blade with bend twist deformation

    Get PDF
    Adaptive composite propeller blades showing bend twist behaviour have received increasing interest from hydrodynamic and structural engineers. When exposed to periodic loading conditions, such propellers can be designed to have higher energy efficiency and emit less noise and vibration than conventional propellers. This work describes a method to produce an adaptive composite propeller blade and how a point load experiment can verify the predicted elastic response in the blade. A 600 mm-long hollow full-size blade was built and statically tested in the laboratory. Finite element modelling predicted a pitch angle change under operational load variable loads of 0.55°, a geometric change that notably compensates for the load cases. In the laboratory experiment, the blade was loaded at two points with increasing magnitude. The elastic response was measured with digital image correlation and strain gauges. Model predictions and experimental measurements showed the same deformation patterns, and the twist angle agreed within 0.01 degrees, demonstrating that such propellers can be successfully built and modelled by finite element analysis.publishedVersio
    corecore