235 research outputs found
Spectroscopic and photometric studies of white dwarfs in the Hyades
The Hyades cluster is known to harbour ten so-called classical white dwarf
members. Numerous studies through the years have predicted that more than twice
this amount of degenerate stars should be associated with the cluster. Using
the PPMXL catalog of proper motions and positions, a recent study proposed 17
new white dwarf candidates. We review the membership of these candidates by
using published spectroscopic and photometric observations, as well as by
simulating the contamination from field white dwarfs. In addition to the ten
classical Hyades white dwarfs, we find six white dwarfs that may be of Hyades
origin and three more objects that have an uncertain membership status due to
their unknown or imprecise atmospheric parameters. Among those, two to three
are expected as field stars contamination. Accurate radial velocity
measurements will confirm or reject the candidates. One consequence is that the
longstanding problem that no white dwarf older than ~340 Myr appears to be
associated with the cluster remains unsolved.Comment: 14 pages, 9 figures, accepted for publication in the Astronomy and
Astrophysics journa
GREAT: the SOFIA high-frequency heterodyne instrument
We describe the design and construction of GREAT, the German REceiver for
Astronomy at Terahertz frequencies operated on the Stratospheric Observatory
for Infrared Astronomy (SOFIA). GREAT is a modular dual-color heterodyne
instrument for highresolution far-infrared (FIR) spectroscopy. Selected for
SOFIA's Early Science demonstration, the instrument has successfully performed
three Short and more than a dozen Basic Science flights since first light was
recorded on its April 1, 2011 commissioning flight.
We report on the in-flight performance and operation of the receiver that -
in various flight configurations, with three different detector channels -
observed in several science-defined frequency windows between 1.25 and 2.5 THz.
The receiver optics was verified to be diffraction-limited as designed, with
nominal efficiencies; receiver sensitivities are state-of-the-art, with
excellent system stability. The modular design allows for the continuous
integration of latest technologies; we briefly discuss additional channels
under development and ongoing improvements for Cycle 1 observations.
GREAT is a principal investigator instrument, developed by a consortium of
four German research institutes, available to the SOFIA users on a
collaborative basis
FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)
Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly
improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are
currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing
an old IACT with a mirror area of 9.5 square meters and construct a new, fine
pixelized camera using novel G-APDs. The main goal is to evaluate the
performance of a complete system by observing very high energy gamma-rays from
the Crab Nebula. This is an important field test to check the feasibility of
G-APD-based cameras to replace at some time the PMT-based cameras of planned
future IACTs like AGIS and CTA. In this article, we present the basic design of
such a camera as well as some important details to be taken into account.Comment: Poster shown at HEAD 2010, Big Island, Hawaii, March 1-4, 201
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes
Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light
detection in atmospheric Cherenkov telescopes. In this paper, the design and
commissioning of a 36-pixel G-APD prototype camera is presented. The data
acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond
time resolution has been achieved. Cosmic-ray induced air showers have been
recorded using an imaging mirror setup, in a self-triggered mode. This is the
first time that such measurements have been carried out with a complete G-APD
camera.Comment: 9 pages with 11 figure
FACT -- Operation of the First G-APD Cherenkov Telescope
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is
operating successfully at the Canary Island of La Palma. Apart from its purpose
to serve as a monitoring facility for the brightest TeV blazars, it was built
as a major step to establish solid state photon counters as detectors in
Cherenkov astronomy.
The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode
avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since
properties as the gain of G-APDs depend on temperature and the applied voltage,
a real-time feedback system has been developed and implemented. To correct for
the change introduced by temperature, several sensors have been placed close to
the photon detectors. Their read out is used to calculate a corresponding
voltage offset. In addition to temperature changes, changing current introduces
a voltage drop in the supporting resistor network. To correct changes in the
voltage drop introduced by varying photon flux from the night-sky background,
the current is measured and the voltage drop calculated. To check the stability
of the G-APD properties, dark count spectra with high statistics have been
taken under different environmental conditions and been evaluated.
The maximum data rate delivered by the camera is about 240 MB/s. The recorded
data, which can exceed 1 TB in a moonless night, is compressed in real-time
with a proprietary loss-less algorithm. The performance is better than gzip by
almost a factor of two in compression ratio and speed. In total, two to three
CPU cores are needed for data taking. In parallel, a quick-look analysis of the
recently recorded data is executed on a second machine. Its result is publicly
available within a few minutes after the data were taken.
[...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
FACT -- The G-APD revolution in Cherenkov astronomy
Since two years, the FACT telescope is operating on the Canary Island of La
Palma. Apart from its purpose to serve as a monitoring facility for the
brightest TeV blazars, it was built as a major step to establish solid state
photon counters as detectors in Cherenkov astronomy. The camera of the First
G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes
(G-APD), equipped with solid light guides to increase the effective light
collection area of each sensor. Since no sense-line is available, a special
challenge is to keep the applied voltage stable although the current drawn by
the G-APD depends on the flux of night-sky background photons significantly
varying with ambient light conditions. Methods have been developed to keep the
temperature and voltage dependent response of the G-APDs stable during
operation. As a cross-check, dark count spectra with high statistics have been
taken under different environmental conditions. In this presentation, the
project, the developed methods and the experience from two years of operation
of the first G-APD based camera in Cherenkov astronomy under changing
environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging
Conference (IEEE-NSS/MIC), 201
Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj
Nuclear shadowing is observed in the per-nucleon cross-sections of positive
muons on carbon, calcium and lead as compared to deuterium. The data were taken
by Fermilab experiment E665 using inelastically scattered muons of mean
incident momentum 470 GeV/c. Cross-section ratios are presented in the
kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are
consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj
decreases, the size of the shadowing effect, as well as its A dependence, are
found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.
Multifrequency Radiation of Extragalactic Large-Scale Jets
Large-scale extragalactic jets, observed to extend from a few to a few
hundred kiloparsecs from active galactic nuclei, are now studied over many
decades in frequency of electromagnetic spectrum, from radio until (possibly)
TeV gamma rays. For hundreds of known radio jets, only about 25 are observed at
optical frequencies. Most of them are relatively short and faint, with only a
few exceptions, like 3C 273 or M 87, allowing for detailed spectroscopic and
morphological studies. Somewhat surprisingly, the large-scale jets can be very
prominent in X-rays. Up to now, about 25 jets were detected within the 1 - 10
keV energy range, although the nature of this emission is still under debate.
In general, both optical and X-ray jet observations present serious problems
for standard radiation models for the considered objects. Recent TeV
observations of M 87 suggest the possibility of generating large photon fluxes
at these high energies by its extended jet.
In this paper we summarize information about multiwavelength emission of the
large-scale jets, and we point out several modifications of the standard jet
radiation models (connected with relativistic bulk velocities, jet radial
stratification and particle energization all the way along the jet), which can
possibly explain some of the mentioned puzzling observations. We also comment
on gamma-ray emission of the discussed objects.Comment: 29 pages. Modified version, accepted for publication in Chinese
Journal of Astronomy and Astrophysic
- âŠ