906 research outputs found

    An exact-diagonalization study of rare events in disordered conductors

    Full text link
    We determine the statistical properties of wave functions in disordered quantum systems by exact diagonalization of one-, two- and quasi-one dimensional tight-binding Hamiltonians. In the quasi-one dimensional case we find that the tails of the distribution of wave-function amplitudes are described by the non-linear sigma-model. In two dimensions, the tails of the distribution function are consistent with a recent prediction based on a direct optimal fluctuation method.Comment: 13 pages, 5 figure

    GHz Spin Noise Spectroscopy in n-Doped Bulk GaAs

    Get PDF
    We advance spin noise spectroscopy to an ultrafast tool to resolve high frequency spin dynamics in semiconductors. The optical non-demolition experiment reveals the genuine origin of the inhomogeneous spin dephasing in n-doped GaAs wafers at densities at the metal-to-insulator transition. The measurements prove in conjunction with depth resolved spin noise measurements that the broadening of the spin dephasing rate does not result from thermal fluctuations or spin-phonon interaction, as previously suggested, but from surface electron depletion

    Localized collective excitations in doped graphene in strong magnetic fields

    Get PDF
    We consider collective excitations in graphene with filled Landau levels (LL’s) in the presence of an external potential due to a single charged donor D+ or acceptor A− impurity. We show that localized collective modes split off the magnetoplasmon continuum and, in addition, quasibound states are formed within the continuum. A study of the evolution of the strengths and energies of magneto-optical transitions is performed for integer filling factors ν=1,2,3,4 of the lowest LL. We predict impurity absorption peaks above as well as below the cyclotron resonance. We find that the single-particle electron-hole symmetry of graphene leads to a duality between the spectra of collective modes for the D+ and A−. The duality shows up as a set of the D+ and A− magnetoabsorption peaks having the same energies but active in different circular polarizations

    Transport Properties of a One-Dimensional Two-Component Quantum Liquid with Hyperbolic Interactions

    Full text link
    We present an investigation of the sinh-cosh (SC) interaction model with twisted boundary conditions. We argue that, when unlike particles repel, the SC model may be usefully viewed as a Heisenberg-Ising fluid with moving Heisenberg-Ising spins. We derive the Luttinger liquid relation for the stiffness and the susceptibility, both from conformal arguments, and directly from the integral equations. Finally, we investigate the opening and closing of the ground state gaps for both SC and Heisenberg-Ising models, as the interaction strength is varied.Comment: 10 REVTeX pages + 4 uuencoded figures, UoU-002029

    Interacting particles at a metal-insulator transition

    Full text link
    We study the influence of many-particle interaction in a system which, in the single particle case, exhibits a metal-insulator transition induced by a finite amount of onsite pontential fluctuations. Thereby, we consider the problem of interacting particles in the one-dimensional quasiperiodic Aubry-Andre chain. We employ the density-matrix renormalization scheme to investigate the finite particle density situation. In the case of incommensurate densities, the expected transition from the single-particle analysis is reproduced. Generally speaking, interaction does not alter the incommensurate transition. For commensurate densities, we map out the entire phase diagram and find that the transition into a metallic state occurs for attractive interactions and infinite small fluctuations -- in contrast to the case of incommensurate densities. Our results for commensurate densities also show agreement with a recent analytic renormalization group approach.Comment: 8 pages, 8 figures The original paper was splitted and rewritten. This is the published version of the DMRG part of the original pape

    Inferring Displacement Fields from Sparse Measurements Using the Statistical Finite Element Method

    Full text link
    A well-established approach for inferring full displacement and stress fields from possibly sparse data is to calibrate the parameter of a given constitutive model using a Bayesian update. After calibration, a (stochastic) forward simulation is conducted with the identified model parameters to resolve physical fields in regions that were not accessible to the measurement device. A shortcoming of model calibration is that the model is deemed to best represent reality, which is only sometimes the case, especially in the context of the aging of structures and materials. While this issue is often addressed with repeated model calibration, a different approach is followed in the recently proposed statistical Finite Element Method (statFEM). Instead of using Bayes' theorem to update model parameters, the displacement is chosen as the stochastic prior and updated to fit the measurement data more closely. For this purpose, the statFEM framework introduces a so-called model-reality mismatch, parametrized by only three hyperparameters. This makes the inference of full-field data computationally efficient in an online stage: If the stochastic prior can be computed offline, solving the underlying partial differential equation (PDE) online is unnecessary. Compared to solving a PDE, identifying only three hyperparameters and conditioning the state on the sensor data requires much fewer computational resources. This paper presents two contributions to the existing statFEM approach: First, we use a non-intrusive polynomial chaos method to compute the prior, enabling the use of complex mechanical models in deterministic formulations. Second, we examine the influence of prior material models (linear elastic and St.Venant Kirchhoff material with uncertain Young's modulus) on the updated solution. We present statFEM results for 1D and 2D examples, while an extension to 3D is straightforward.Comment: 29 pages, 15 figures, Preprint submitted to Elsevie
    • …
    corecore