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Abstract. We have calculated wave functions and matrix elements of the dipole operator
in the two- and three-dimensional Anderson model of localization and have studied their
statistical properties in the limit of weak disorder. In particular, we have considered two
cases. First, we have studied the fluctuations as an external Aharonov-Bohm flux is varied.
Second, we have considered the influence of incipient localization. In both cases, the statisti-
cal properties of the eigenfunctions are non-trivial, in that the joint probability distribution
function of eigenvalues and eigenvectors does no longer factorize. We report on detailed
comparisons with analytical results, obtained within the non-linear sigma model and/or the
semiclassical approach.
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1 Introduction

Disordered quantum systems exhibit irregular fluctuations of eigenvalues, wave func-
tions and matrix elements. The statistical properties of wave functions and matrix
elements are of particular interest. Both are of direct experimental relevance. Fluc-
tuations of wave-function amplitudes determine the fluctuations of the conductance
through quantum dots. The effect of an external perturbation is described by matrix
elements of the perturbing operator in the eigenstates of the system.
In the metallic regime (which is characterized by a large conductance g ≫ 1), wave-
function and matrix-element fluctuations are described by random matrix theory
(RMT) [1, 2]. In Dyson’s ensembles [1] such fluctuations are particularly simple
since the joint probability distribution function of eigenvector components and eigen-
values factorizes [3] and the statistical properties of the eigenvectors are determined
by the invariance properties of the random matrix ensembles. One finds that the
wave-function amplitudes are distributed according to the Porter–Thomas distribu-
tion [3]. Non-diagonal matrix elements of an observable Â are Gaussian distributed
[3] around zero with variance σ2

off . Diagonal matrix elements are also Gaussian dis-
tributed, with variance σ2

diag = (β/2)σ2
off where β = 1 in the Gaussian orthogonal

ensemble (GOE) of random matrices and β = 2, 4 in the Gaussian unitary (GUE)
and symplectic ensembles. The variance of non-diagonal matrix elements is essen-
tially given by a time integral of a classical autocorrelation function [4] and does not
depend on the symmetry properties.
Of particular interest are those cases where the fluctuations of eigenvalues and eigen-
vectors are no longer independent. In the following we analyse two such situations.
First, we consider the effect of an Aharonov-Bohm flux which breaks time-reversal in-
variance and drives a transition from the GOE to the GUE. The statistical properties
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of diagonal matrix elements in the transition regime between GOE and GUE were
calculated in [5, 6, 7], those of level velocities in [6, 8, 9]. The statistical properties
of wave functions in the transition regime were derived in [10]. Here we compare
these predictions with numerical results obtained for the Anderson model. Second,
we study the influence of increased disorder on the statistical properties of wave func-
tions. The question how the distribution of wave-function amplitudes deviates from
the RMT predictions at smaller conductances g has recently been discussed in [11],
within the framework of the non-linear sigma model [12, 13, 14], and using a direct
optimal fluctuation method [15]. Here we compare our numerical results for distribu-
tions of wave-function amplitudes in the d = 3 dimensional Anderson model with the
perturbative results of [13].

2 The Anderson model of localization

We consider the Anderson model of localization [16] in d = 2 and d = 3 dimensions
which is defined by the tight-binding Hamiltonian on a square or cubic lattice with
N sites and unit lattice spacing

Ĥ =
∑

n

|n〉ǫn〈n|+
∑

n6=m

|n〉tnm〈m| , (1)

and |n〉 represent the Wannier state at site n. The on-site potential ǫn is assumed
to be random and taken to be uniformly distributed between −W/2 and W/2. The
hopping parameters tnm connect only nearest-neighbour sites (and t = 1). In the
presence of an Aharonov Bohm-flux ϕ, the hopping parameters acquire an additional
phase. The flux ϕ is measured in units of the flux quantum ϕ0 = hc/e and we define
φ = ϕ/ϕ0. The presence of an Aharonov-Bohm flux φ breaks time-reversal invariance.
We have determined the eigenvalues Eα and the eigenfunctions ψα(r) using a modified
Lanczos algorithm [17]. The statistical properties of eigenvalues, eigenfunctions and

matrix elements [18] Aαβ = 〈ψα|Â|ψβ〉 of an observable Â depend on the strength
of the disorder potential. In the metallic regime (which is characterized by a large
conductance g) these fluctuations are described by RMT on energy scales smaller than
the Thouless energy ED = g∆, where ∆ is the mean level spacing. This is the regime
we consider in Sec. 3, while Sec. 4 deals with g−1 corrections to the distribution of
wave-function amplitudes.

3 The GOE to GUE transition

In this section, we discuss numerical results for the fluctuations of matrix elements,
level velocities and wave functions in the transition region between GOE and GUE.
We have calculated the smoothed variances

Cv(ǫ, φ) = 〈|d̃v(E, φ; ǫ)|2〉E Cm(ǫ, φ) = 〈|d̃m(E, φ; ǫ)|2〉E (2)

where d̃v,m(E, φ; ǫ) are the fluctuating parts of the densities

dv(E, φ; ǫ) =
∑

α

∂Eα

∂φ
δǫ[E − Eα(φ)] (3)

dm(E, φ; ǫ) =
∑

α

Aαα δǫ[E − Eα(φ)] (4)
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Fig. 1: Velocities and matrix elements in the transition regime between GOE and GUE
for the 27 × 27 Anderson model with W = 1.7 (symbols), compared to the corresponding
semiclassical expressions (lines). The numerical values of ǫ are 0.158 (▽), 0.224 (×), 0.316
(✁), 0.447 (◦), 0.631 (✷), 0.891 (✸), 1.26 (△), 1.78 (+), 2.51 (∗).

with δǫ(E) = (
√
2πǫ)−1 exp(−E2/2ǫ2). It is assumed that 〈Aαα〉 = 〈∂Eα/∂φ〉 = 0.

Cm was calculated exactly in [5]. Here we compare with semiclassical expressions
for Cm [5, 7] and Cv [9] obtained within the diagonal approximation and valid for
∆ < ǫ < g∆ [19] (see also [8]). In the case of Cm we considered the matrix elements

of the dipole operator Â = x̂. The numerical data were obtained by averaging over
69 realisations of disorder in the 27× 27 Anderson model with W = 1.7 and over all
states in the energy interval [−3.4,−1.9]. The two-dimensional case was considered
in order to be able to obtain a good numerical accuracy at each flux value in a
tolerable computing time. In general we observe good agreement. For a more detailed
discussion of the results see [9].
In Fig. 2(a) we show corresponding results for the distribution function of wave-
function amplitudes which is defined as follows

f(t) = ∆

〈
∑

α

δ(t− |ψα(r)|2N) δ(E − Eα)

〉
. (5)

Within RMT one obtains for f(t) in the limiting cases of GOE and GUE

fGOE
PT (t) =

1√
2πt

exp(−t/2) , (6)

fGUE
PT (t) = exp(−t) (7)

(Porter–Thomas distributions [3]). An expression in the transition region between
GOE and GUE was derived in [10]. We have computed f(t) numerically for several
values of φ in the 13× 13× 13 Anderson model at W = 0.5 (in the metallic regime).
Our results are shown in Fig. 2(a), where we have plotted 2

√
tf(t) versus

√
t. The

results are in good agreement with the analytical formulae (6), (7) and those given in
[10].
It was predicted in [6] that the distribution of velocities ceases to be Gaussian in the
transition regime between GOE and GUE. The deviations are small, however, and
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Fig. 2: Wave-function statistics in the 13×13×13 Anderson model. (a) GOE to GUE tran-
sition of the distribution function in the metallic regime. The Porter-Thomas distributions
are shown as dashed lines. The predictions of [10] are show as solid lines. (b) Deviations
∆f(t) from the Porter–Thomas distribution for the orthogonal case, and several values of
disorder strength, W = 1, 2, 3, 4 and 5. The results are averaged over the energy interval
[−1.7,−1.4]. The dashed vertical lines denote the zeros of the first order correction term in
Eq. (8). The solid lines are fits according to Eq. (8).

we have not been able to reduce the statistical errors of our numerical results to an
extent that a meaningful comparison with the results of [6] becomes possible.

4 Deviations from RMT

Within the non-linear sigma model it is possible to derive g−1–corrections to RMT.
For distributions of wave-function amplitudes this was done in [13], where in the
orthogonal case one obtains

f(t) = fGOE
PT (t)

[
1 + adg

−1
(
3/2− 3t+ t2/2

)
+O

(
g−2

)]
. (8)

In the case discussed in Ref. [13], a3 ∼ L/l where L is the linear dimension of the
system and l is the mean free path. Eq. (8) is valid provided t≪

√
g/ad.

We have performed numerical simulations in the d = 3 Anderson model, using dif-
ferent values of disorder, and have computed the distribution f(t) by averaging over
400 realizations of disorder. The deviations from the Porter–Thomas distribution,
∆f(t) = f(t)/fGOE

PT (t)− 1, is shown in Fig. 2(b). In all cases, the deviations exhibit a
characteristic form: the probability of finding small and large amplitudes is enhanced,
while the distribution function is reduced near its maximum. We find that ∆f(t) can
be fitted using Eq. (8). At increasingly large disorder, deviations occur at lower values
of t. In all cases, however, the zeroes of Eq. (8) are well reproduced. Since at weak
disorder l ∼ W−2 one might expect a3/g ∼ W 4. In the present case, however, we
find a3/g ∼ W 2. In order to resolve this discrepancy, more accurate numerical data
at small values of W are needed. Corresponding results have been obtained for the
unitary case.
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5 Conclusions

We have analyzed RMT fluctuations of matrix elements and level velocities in the
d = 2 dimensional Anderson model, in the transition regime between GOE and GUE
and have found good agreement between the predictions of RMT and our numerical
results. For the distribution of wave-function amplitudes in d = 3 we have studied
deviations from RMT, in the form of g−1–corrections, as suggested in [13]. Our nu-
merical results can be fitted by the expressions derived in [13], the dependence of
the fit parameter a3 on W however, differs from what might be expected. In this
context it will be very interesting to determine the tails of the distribution functions
and compare with the predictions in [12, 14] and [15].
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