16 research outputs found

    Phase Transitions in Multicomponent String Model

    Full text link
    We propose a one-dimensional model of a string decorated with adhesion molecules (stickers) to mimic multicomponent membranes in restricted geometries. The string is bounded by two parallel walls and it interacts with one of them by short range attractive forces while the stickers are attracted by the other wall. The exact solution of the model in the case of infinite wall separation predicts both continuous and discontinuous transitions between phases characterised by low and high concentration of stickers on the string. Our model exhibits also coexistence of these two phases, similarly to models of multicomponent membranes.Comment: letter, 8 pages, 3 figure

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF

    Membrane-Elasticity Model of Coatless Vesicle Budding Induced by ESCRT Complexes

    Get PDF
    The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT) directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding

    Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard)

    Get PDF
    Macrozoobenthic soft-sediment communities inhabiting six depth zones of central Arctic Kongsfjorden were analysed comparatively using SCUBA-diving. 63 taxa were found, 30 of which had not been reported for Kongsfjorden and seven for Svalbard. Suspensivorous or surface and sub-surface detritivorous polychaetes and deposit-feeding amphipods were dominant. Only eleven taxa of 45 species and additional 18 families identified inhabited the complete depth range. Biomass ranged from 3.5 to 25.0 g ash free dry mass m-2 and mean Shannon diversity (Log e) was 2.06. Similarity clustering from abun-dance and biomass data showed a significant difference between the shal-low station (5m) and the rest. The latter formed two subgroups (10-20m, 25-30m). These differences together with information on ice-scouring support the intermediate disturbance hypothesis indicating that habitats impacted by moderate iceberg scouring enable higher diversity. In contrast, biotopes frequently affected only host pioneer communities, while mature, less diverse assemblages dominate depths of low impact

    Tolerância de rizóbios de diferentes procedências ao zinco, cobre e cádmio Tolerance of rhizobia genera from different origins to zinc, copper and cadmium

    No full text
    Sessenta estirpes/isolados dos gêneros Bradyrhizobium, Rhizobium, Sinorhizobium, Mesorhizobium e Azorhizobium, procedentes de diferentes locais (Mata Atlântica, Amazônia, culturas agrícolas e experimentos com metais pesados) e de espécies hospedeiras pertencentes às subfamílias Papilionoideae, Mimosoideae e Caesalpinoideae, foram avaliadas quanto à tolerância a Zn, Cu e Cd em meio YMA modificado pela adição de tampões biológicos (HEPES e MES) e suplementados com Cu (0 a 60 mg L-1), Cd (0 a 60 mg L-1) e Zn (0 a 1.000 mg L-1). Mediante padrões de crescimento atribuídos às culturas nas diferentes concentrações dos metais, avaliaram-se as concentrações máximas toleradas e as doses tóxicas destes metais para redução de crescimento em 25% (DT25) e 50% (DT50). Não houve influência da procedência na concentração máxima de metal tolerada. A ordem de sensibilidade aos metais, considerando-se as concentrações máximas toleradas, foi Azorhizobium > Rhizobium = Mesorhizobium = Sinorhizobium > Bradyrhizobium. A DT25 e a DT50 foram úteis para diferenciarem estirpes/isolados de um mesmo gênero, que atingiram a mesma concentração máxima tolerada a Zn, Cu e Cd. A ordem de toxicidade dos metais estudados foi Cu > Cd > Zn.<br>Sixty strains/isolates of the genera Bradyrhizobium, Rhizobium, Sinorhizobium, Mesorhizobium and Azorhizobium, isolated from different hosts (legume subfamilies: Papilionoideae, Mimosoideae and Caesalpinoideae) and location (Atlantic Forest, Amazon region, crop plantings and heavy metal experiments), were evaluated for Zn, Cu and Cd tolerance in YMA medium modified by the addition of biological buffers (HEPES and MES) and supplemented with Cu (0 to 60 mg L-1), Cd (0 to 60 mg L-1), and Zn (0 to 1,000 mg L-1)sulphates. Growth standards were applied to evaluate rhizobia cultures growth at different metal concentrations, allowing evaluation of highest tolerated concentrations of Zn, Cu, and Cd and the toxic doses (concentrations) of these metals, which reduce the growth standard in 25% (DT25) and 50% (DT50). It was verified that there was no influence of the origin (host and location) on the highest tolerated concentration of each metal; the order of sensitivity to heavy metals, considering the highest tolerable concentrations, was Azorhizobium > Rhizobium = Mesorhizobium = Sinorhizobium > Bradyrhizobium. The DT25 and the DT50 were useful to differentiate strain/isolates of the same genus, which reached the same highest tolerated concentration to Zn, Cu, and Cu; and the order of toxicity was Cu > Cd > Zn
    corecore