68 research outputs found

    Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer

    Get PDF
    Topoisomerase IIb binding protein 1 (TopBP1) is involved in cell survival, DNA replication, DNA damage repair and cell cycle checkpoint control. The biological function of TopBP1 and its close relation with BRCA1 prompted us to investigate whether alterations in the TopBP1 gene can influence the risk of breast cancer. The aim of this study was to examine the association between five polymorphisms (rs185903567, rs116645643, rs115160714, rs116195487, and rs112843513) located in the 30UTR region of the TopBP1 gene and breast cancer risk as well as allele-specific gene expression. Five hundred thirty-four breast cancer patients and 556 population controls were genotyped for these SNPs. Allele-specific Top- BP1 mRNA and protein expressions were determined by using real time PCR and western blotting methods, respectively. Only one SNP (rs115160714) showed an association with breast cancer. Compared to homozygous common allele carriers, heterozygous and homozygous for the T variant had significantly increased risk of breast cancer (adjusted odds ratio = 3.81, 95 % confidence interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and protein expression were higher in the individuals with the CT or TT genotype. There was a significant association between the rs115160714 and tumor grade and stage. Most carriers of minor allele had a high grade (G3) tumors classified as T2-T4N1M0. Our study raises a possibility that a genetic variation of TopBP1 may be implicated in the etiology of breast cancer

    Neustonic versus epiphytic bacteria of eutrophic lake and their biodegradation ability on deltamethrin

    Get PDF
    This study evaluated biodegradation of the insecticide deltamethrin (1 μg l−1) by pure cultures of neustonic (n = 25) and epiphytic (n = 25) bacteria and by mixed cultures (n = 1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM ≈ 250 μm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake Chełmżyńskie. Results indicate that neustonic and epiphytic bacteria are characterized by a similar average capacity to degrade deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%

    Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP)

    Get PDF
    The capability of environmental microorganisms to biodegrade simazine—an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)—was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50 mg/l) was degraded (within 8 days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24 h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4 days)

    Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Krakow, Poland

    Get PDF
    Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively

    Assessment of trace metal mobility and phytoavailability in soils using the BCR extraction procedure

    No full text
    Zawartość pierwiastków śladowych w glebach waha się w szerokich granicach, a ich mobilność i dostępność uzależniona jest nie tylko od ich całkowitej zawartości, lecz również od formy, w jakiej występują. Celem niniejszej pracy było poznanie zawartości całkowitej niklu, ołowiu, cynku i miedzi w glebach użytkowanych rolniczo oraz ocena mobilności i fitodostępności tych metali na tle właściwości fizykochemicznych tych gleb. W próbkach pobranych z 3 profili glebowych (czarna ziemia i 2 profile mad rzecznych) oznaczono zawartość Pb, Ni, Zn i Cu, zgodnie z protokołem zmodyfikowanej procedury ekstrakcji sekwencyjnej BCR, uzupełnionej digestią aqua regia. Zawartość całkowita badanych metali odpowiadała w większości przypadków wartościom naturalnym, często nie przekraczając poziomu tła geochemicznego. Jedynie w przypadku jednej z badanych mad stwierdzono podwyższoną zawartość cynku i ołowiu, szczególnie w poziomie powierzchniowym, przekraczającą nieznacznie dopuszczalne normy. Najniższą fitodostępnością spośród badanych metali charakteryzowała się miedź (formy wymienne średnio na poziomie 4,73% zawartości całkowitej), a najwyższą cynk (11,49%). Najtrwalej z fazą stałą gleby związany był nikiel, którego zawartość we frakcji rezydualnej sięgała 84,46% zawartości całkowitej. Średnio połowa zawartości całkowitej ołowiu oznaczona została jako frakcja związana z tlenkami żelaza i manganu, jednocześnie w przypadku tego metalu znaczącą rolę w jego wiązaniu odgrywała materia organiczna (frakcja związana z materią organiczną - średnio 27,5%). Wyraźnie znaczącą rolę w wiązaniu wszystkich badanych metali odgrywały związki żelaza i manganu.The content of trace elements in soils varies widely and their mobility and availability depends not only on the total content but also on the form of their occurrence. The aim of this study was to determine the total content of nickel, lead, zinc and copper in soils used for agriculture, and mobility and phytoavailability assessment of these metals against a background of physical and chemical properties of these soils. In samples taken from three soil profiles (black earth and 2 alluvial soils) according to the protocol of modified BCR sequential extraction procedure supplemented with aqua regia digestion the contents of Pb, Ni, Zn and Cu were determined. The total content of analyzed metals in most cases corresponded to the natural values, often not exceeded the geochemical background level. Only in the one profile of the alluvial soils higher concentration of zinc and lead was noticed (especially in the surface horizon), slightly exceeding the legal limit. Among the studied metals the lowest phytoavailability was characterized by a copper (exchangeable forms on average 4.73% of the total), and the highest by a zinc (11.49%). Nickel was the most permanently bound with soil solid phase, and its content in the residual fraction reached 84.46% of the total. Approximately half of the total lead content was determined as a fraction bound with iron and manganese oxides, while in the case of this metal a significant role in the binding of this metal was playing organic matter (fraction bound with organic matter - an average of 27.5%). Significant role in the binding of all investigated metals was playing an iron and manganese compounds
    corecore