144 research outputs found

    The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination

    Get PDF
    We present detailed computations of the vertical structure of an accretion disc illuminated by hard X-ray radiation with the code {\sc titan-noar} suitable for Compton thick media. The energy generated via accretion is dissipated partially in the cold disc as well as in the X-ray source. We study the differences between the case where the X-ray source is in the form of a lamp post above the accretion disc and the case of a heavy corona. We consider radiative heating via Comptonization together with heating via photo-absorption on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in lines is precisely calculated. A better description of the heating/cooling through the inclusion of line transfer, a correct description of the temperature in the deeper layers, a correct description of the entire disc vertical structure, as well as the study of the possible coronal pressure effect, constitute an improvement in comparison to previous works. We show that exact calculations of hydrostatic equilibrium and determination of the disc thickness has a crucial impact on the optical depth of the hot illuminated zone. We assume a moderate illumination where the viscous flux equals the X-ray radiation flux. A highly ionized skin is created in the lamp post model, with the outgoing spectrum containing many emission lines and ionization edges in emission or absorption in the soft X-ray domain, as well as an iron line at ∼7\sim 7 keV consisting of a blend of low ionization line from the deepest layers and hydrogen and helium like resonance line from the upper layers, and almost no absorption edge, contrary to the case of a slab of constant density.A full heavy corona completely suppresses the highly ionized zone on the top of the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA

    Disk/corona model: The transition to ADAF

    Get PDF
    We propose a model of the accretion flow onto a black hole consisting of the accretion disk with an accreting two-temperature corona. The model is based on assumptions about the radiative and conductive energy exchange between the two phases and the pressure equilibrium. The complete model is determined by the mass, the accretion rate, and the viscosity parameter. We present the radial dependencies of parameters of such a two-phase flow, with advection in the corona and the disk/corona mass exchange due to evaporation/condensation included, and we determine the transition radius from a two-phase disk/corona accretion to a single-phase optically thin flow (ADAF) in the innermost part of the disk as a function of accretion rate. We identify the NLS1 galaxies with objects accreting at a rate close to the Eddington accretion rate. The strong variability of these objects may be related to the limit cycle behaviour expected in this luminosity range, as the disk, unstable due to the dominance by the radiation pressure, oscillates between the two stable branches: the advection-dominated optically thick branch and the evaporation branch.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density

    Get PDF
    The requirement of intermediate line component in the recently observed spectra of several AGNs points to possibility of the existence of a physically separate region between broad line region (BLR) and narrow line region (NLR). In this paper we explore the emission from intermediate line region (ILR) by using the photoionization simulations of the gas clouds distributed radially from the AGN center. The gas clouds span distances typical for BLR, ILR and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. Single cloud structure is calculated under the assumption of the constant pressure. We show that the slope of the power law cloud density radial profile does not affect the existence of ILR in major types of AGN. We found that the low ionization iron line, Fe~II, appears to be highly sensitive for the presence of dust and therefore becomes potential tracer of dust content in line emitting regions. We show that the use of disk-like cloud density profile computed at the upper part of the accretion disc atmosphere reproduces the observed properties of the line emissivities. In particular, the distance of Hβ{\beta} line inferred from our model agrees with that obtained from the reverberation mapping studies in Sy1 galaxy NGC 5548.Comment: 15 pages, 13 figure

    The intermediate line region in active galactic nuclei

    Get PDF
    We show that the recently observed suppression of the gap between the broad line region (BLR) and the narrow line region (NLR) in some AGN can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate velocity full width half maximum (FWHM) ∼\sim 700 - 1200 km s−1^{-1}. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As it was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of {\sc cloudy} photoionization code, show that the differences in the shape of spectral energy distribution (SED) from the central region of AGN, do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission vs radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ∼\sim 1011.5^{11.5} cm−3^{-3} at the sublimation radius provides the continuous line emission vs radius and fully explains the recently observed lack of apparent gap in some AGN. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission line clouds.Comment: 9 pages, 6 figures, accepted for publication in Ap

    Conditions for the Thermal Instability in the Galactic Centre Mini-spiral region

    Get PDF
    We explore the conditions for the thermal instability to operate in the mini-spiral region of the Galactic centre (Sgr A*), where both the hot and cold media are known to coexist. The photoionisation Cloudy calculations are performed for different physical states of plasma. We neglect the dynamics of the material and concentrate on the study of the parameter ranges where the thermal instability may operate, taking into account the past history of Sgr A* bolometric luminosity. We show that the thermal instability does not operate at the present very low level of the Sgr A* activity. However, Sgr A* was much more luminous in the past. For the highest luminosity states the two-phase medium can be created up to 1.4 pc from the centre. The presence of dust grains tends to suppress the instability, but the dust is destroyed in the presence of strong radiation field and hot plasma. The clumpiness is thus induced in the high activity period, and the cooling/heating timescales are long enough to preserve later the past multi-phase structure. The instability enhances the clumpiness of the mini-spiral medium and creates a possibility of episodes of enhanced accretion of cold clumps towards Sgr A*. The mechanism determines the range of masses and sizes of clouds; under the conditions of Sgr A*, the likely values come out 11 - 102M⊕10^2M_{\oplus} for the cloud typical mass.Comment: Accepted for publication in MNRAS, 10 pages, 7 figure
    • …
    corecore