11 research outputs found

    Effects of Vitamin D Deficiency on Proliferation and Autophagy of Ovarian and Liver Tissues in a Rat Model of Polycystic Ovary Syndrome

    Get PDF
    We aimed to examine the alterations of the insulin signaling pathway, autophagy, nitrative stress and the effect of vitamin D supplementation in the liver and ovaries of vitamin D deficient hyperandrogenic rats.Female Wistar rats received eight weeks of transdermal testosterone treatment and lived on a low vitamin D diet (D-T+). Vitamin D supplementation was achieved by oral administration of vitamin D3 (D+T+). Sham-treated (D+T-) and vitamin D deficient animals (D-T-) served as controls. (N = 10-12 per group).D-T+ animals showed decreased LC3 II levels in the liver and increased p-Akt/Akt and p-eNOS/eNOS ratios with decreased insulin receptor staining in the ovaries. Vitamin D supplementation prevented the increase of Akt phosphorylation in the ovaries. Vitamin D deficiency itself also led to decreased LC3 II levels in the liver and decreased insulin receptor staining in the ovaries. D-T+ group showed no increase in nitrotyrosine staining; however, the ovaries of D-T- rats and the liver of D+T+ animals showed increased staining intensity.Vitamin D deficiency itself might lead to disrupted ovarian maturation and autophagy malfunction in the liver. Preventing Akt phosphorylation may contribute to the beneficial effect of vitamin D treatment on ovarian function in hyperandrogenism

    Effects of Vitamin D on Fertility, Pregnancy and Polycystic Ovary Syndrome—A Review

    No full text
    Polycystic ovary syndrome (PCOS) is one of the most common endocrine reproductive disorders in women. Vitamin D deficiency is also quite common in this condition. The degree of vitamin D deficiency correlates with the severity of PCOS. Both male and female vitamin D levels play a role in fertility and affect the outcomes of in vitro fertilization (IVF). Moreover, fertility and IVF indicators are improved by vitamin D not only in healthy women but in those diagnosed with PCOS. Both vitamin D deficiency and PCOS increase pregnancy-related complications. Vitamin D supplementation and optimal vitamin D levels decrease both maternal and fetal risk for complications and adverse events. Furthermore, vitamin D supplementation may ameliorate or even prevent pregnancy-related reversible bone loss in mothers. This review emphasizes the roles of vitamin D deficiency and vitamin D supplementation and their correlation with PCOS regarding reproductive health

    Nitroxide—HMP—Protects Human Trophoblast HTR-8/SVneo Cells from H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress by Reducing the HIF1A Signaling Pathway

    No full text
    Preeclampsia (PE) is a pregnancy-specific syndrome affecting 5–7% of patients. There is no effective treatment available. Early abnormal placental development is associated with oxidative stress (OS) and a release of reactive oxygen species (ROS) in the placenta. This phenomenon leads to downstream signaling, Hypoxia Inducible Factor 1A (HIF1A) stabilization and transcription of the anti-angiogenic factors soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sEng), which are known to cause endothelial and trophoblast dysfunction and cardinal features of PE: hypertension, proteinuria and, in severe cases, eclampsia. We tested whether 3-(Hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HMP)—a nitroxide-type antioxidant molecule—can reduce placental OS and mitigate PE symptoms in vitro. We induced OS in human trophoblast (HTR-8/SVneo) cells with hydrogen peroxide (H2O2) and assessed whether modulating cell redox function with HMP reduces cell injury, mitochondrial stress and HIF1A and sFLT1 production. Pre-treatment with HMP reduced mitochondrial-derived ROS production, restored LC3B expression and reduced HIF1A and sFLT1 expression in H2O2-exposed HTR-8/SVneo trophoblast cells. HMP improved the mitochondrial electron chain enzyme activity, indicating that a reduction in OS alleviates mitochondrial stress and also reduces anti-angiogenic responses. In reducing placental trophoblast OS, HMP presents a potential novel therapeutic approach for the treatment of PE. Future investigation is warranted regarding the in vivo use of HMP

    Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery

    No full text
    The vitamin-D-sensitivity of the cardiovascular system may show gender differences. The prevalence of vitamin D (VD) deficiency (VDD) is high, and it alters cardiovascular function and increases the risk of stroke. Our aim was to investigate the vascular reactivity and histological changes of isolated carotid artery of female and male rats in response to different VD supplies. A total of 48 male and female Wistar rats were divided into four groups: female VD supplemented, female VDD, male VD supplemented, male VDD. The vascular function of isolated carotid artery segments was examined by wire myography. Both vitamin D deficiency and male gender resulted in increased phenylephrine-induced contraction. Acetylcholine-induced relaxation decreased in male rats independently from VD status. Inhibition of prostanoid signaling by indomethacin reduced contraction in females, but increased relaxation ability in male rats. Functional changes were accompanied by VDD and gender-specific histological alterations. Elastic fiber density was significantly decreased by VDD in female rats, but not in males. Smooth muscle actin and endothelial nitric oxide synthase levels were significantly lowered, but the thromboxane receptor was elevated in VDD males. Decreased nitrative stress was detected in both male groups independently from VD supply. The observed interactions between vitamin D deficiency and sex may play a role in the gender difference of cardiovascular risk

    Vitamin D Deficiency Cause Gender Specific Alterations of Renal Arterial Function in a Rodent Model

    No full text
    Vitamin D deficiency shows positive correlation to cardiovascular risk, which might be influenced by gender specific features. Our goal was to examine the effect of Vitamin D supplementation and Vitamin D deficiency in male and female rats on an important hypertension target organ, the renal artery. Female and male Wistar rats were fed with Vitamin D reduced chow for eight weeks to induce hypovitaminosis. Another group of animals received normal chow with further supplementation to reach optimal serum vitamin levels. Isolated renal arteries of Vitamin D deficient female rats showed increased phenylephrine-induced contraction. In all experimental groups, both indomethacin and selective cyclooxygenase-2 inhibition (NS398) decreased the phenylephrine-induced contraction. Angiotensin II-induced contraction was pronounced in Vitamin D supplemented males. In both Vitamin D deficient groups, acetylcholine-induced relaxation was impaired. In the female Vitamin D supplemented group NS398, in males the indomethacin caused reduced acetylcholine-induced relaxation. Increased elastic fiber density was observed in Vitamin D deficient females. The intensity of eNOS immunostaining was decreased in Vitamin D deficient females. The density of AT1R staining was the highest in the male Vitamin D deficient group. Although Vitamin D deficiency induced renal vascular dysfunction in both sexes, female rats developed more extensive impairment that was accompanied by enzymatic and structural changes

    Accurate Quantitative Histomorphometric-Mathematical Image Analysis Methodology of Rodent Testicular Tissue and Its Possible Future Research Perspectives in Andrology and Reproductive Medicine

    No full text
    Infertility is increasing worldwide; male factors can be identified in nearly half of all infertile couples. Histopathologic evaluation of testicular tissue can provide valuable information about infertility; however, several different evaluation methods and semi-quantitative score systems exist. Our goal was to describe a new, accurate and easy-to-use quantitative computer-based histomorphometric-mathematical image analysis methodology for the analysis of testicular tissue. On digitized, original hematoxylin-eosin (HE)-stained slides (scanned by slide-scanner), quantitatively describable characteristics such as area, perimeter and diameter of testis cross-sections and of individual tubules were measured with the help of continuous magnification. Immunohistochemically (IHC)-stained slides were digitized with a microscope-coupled camera, and IHC-staining intensity measurements on digitized images were also taken. Suggested methods are presented with mathematical equations, step-by-step detailed characterization and representative images are given. Our novel quantitative histomorphometric-mathematical image analysis method can improve the reproducibility, objectivity, quality and comparability of andrological-reproductive medicine research by recognizing even the mild impairments of the testicular structure expressed numerically, which might not be detected with the present semi-quantitative score systems. The technique is apt to be subjected to further automation with machine learning and artificial intelligence and can be named ‘Computer-Assisted or -Aided Testis Histology’ (CATHI)

    Vitamin D Deficiency Reduces Vascular Reactivity of Coronary Arterioles in Male Rats

    No full text
    Background: Vitamin D deficiency (VDD) may be considered an independent cardiovascular (CV) risk factor, and it is well known that CV risk is higher in males. Our goal was to investigate the pharmacological reactivity and receptor expression of intramural coronary artery segments of male rats in cases of different vitamin D supply. Methods: Four-week-old male Wistar rats were divided into a control group (n = 11) with optimal vitamin D supply (300 IU/kgbw/day) and a VDD group (n = 11, &lt;0.5 IU/kgbw/day). After 8 weeks of treatment, intramural coronary artery segments were microprepared, their pharmacological reactivity was examined by in vitro microangiometry, and their receptor expression was investigated by immunohistochemistry. Results: Thromboxane A2 (TXA2)-agonist induced reduced vasoconstriction, testosterone (T) and 17-β-estradiol (E2) relaxations were significantly decreased, a significant decrease in thromboxane receptor (TP) expression was shown, and the reduction in estrogen receptor-α (ERα) expression was on the border of significance in the VDD group. Conclusions: VD-deficient male coronary arteries showed deteriorated pharmacological reactivity to TXA2 and sexual steroids (E2, T). Insufficient vasoconstrictor capacity was accompanied by decreased TP receptor expression, and vasodilator impairments were mainly functional. The decrease in vasoconstrictor and vasodilator responses results in narrowed adaptational range of coronaries, causing inadequate coronary perfusion that might contribute to the increased CV risk in VDD
    corecore