480 research outputs found

    Space-time extensions II

    Full text link
    The global extendibility of smooth causal geodesically incomplete spacetimes is investigated. Denote by γ\gamma one of the incomplete non-extendible causal geodesics of a causal geodesically incomplete spacetime (M,gab)(M,g_{ab}). First, it is shown that it is always possible to select a synchronised family of causal geodesics Γ\Gamma and an open neighbourhood U\mathcal{U} of a final segment of γ\gamma in MM such that U\mathcal{U} is comprised by members of Γ\Gamma, and suitable local coordinates can be defined everywhere on U\mathcal{U} provided that γ\gamma does not terminate either on a tidal force tensor singularity or on a topological singularity. It is also shown that if, in addition, the spacetime, (M,gab)(M,g_{ab}), is globally hyperbolic, and the components of the curvature tensor, and its covariant derivatives up to order k1k-1 are bounded on U\mathcal{U}, and also the line integrals of the components of the kthk^{th}-order covariant derivatives are finite along the members of Γ\Gamma---where all the components are meant to be registered with respect to a synchronised frame field on U\mathcal{U}---then there exists a CkC^{k-} extension Φ:(M,gab)(M^,g^ab)\Phi: (M,g_{ab}) \rightarrow (\widehat{M},\widehat{g}_{ab}) so that for each γˉΓ\bar\gamma\in\Gamma, which is inextendible in (M,gab)(M,g_{ab}), the image, Φγˉ\Phi\circ\bar\gamma, is extendible in (M^,g^ab)(\widehat{M},\widehat{g}_{ab}). Finally, it is also proved that whenever γ\gamma does terminate on a topological singularity (M,gab)(M,g_{ab}) cannot be generic.Comment: 42 pages, no figures, small changes to match the published versio

    Stationary Black Holes as Holographs

    Get PDF
    Smooth spacetimes possessing a (global) one-parameter group of isometries and an associated Killing horizon in Einstein's theory of gravity are investigated. No assumption concerning the asymptotic structure is made, thereby, the selected spacetimes may be considered as generic distorted stationary black holes. First, spacetimes of arbitrary dimension, n3n\geq 3, with matter satisfying the dominant energy condition and allowing non-zero cosmological constant are investigated. In this part complete characterisation of the topology of the event horizon of ``distorted'' black holes is given. It is shown that the topology of the event horizon of ``distorted'' black holes is allowed to possess a much larger variety than that of the isolated black hole configurations. In the second part, 4-dimensional (non-degenerate) electrovac distorted black hole spacetimes are considered. It is shown that the spacetime geometry and the electromagnetic field are uniquely determined in the black hole region once the geometry of the bifurcation surface and one of the electromagnetic potentials are specified there. Conditions guaranteeing the same type of determinacy, in a neighbourhood of the event horizon, on the {\it domain of outer communication} side are also investigated. In particular, they are shown to be satisfied in the analytic case.Comment: 31 pages, LaTeX; typos corrected, new references added, to appear in CQ

    Ellipsoidal shapes in general relativity: general definitions and an application

    Get PDF
    A generalization of the notion of ellipsoids to curved Riemannian spaces is given and the possibility to use it in describing the shapes of rotating bodies in general relativity is examined. As an illustrative example, stationary, axisymmetric perfect-fluid spacetimes with a so-called confocal inside ellipsoidal symmetry are investigated in detail under the assumption that the 4-velocity of the fluid is parallel to a time-like Killing vector field. A class of perfect-fluid metrics representing interior NUT-spacetimes is obtained along with a vacuum solution with a non-zero cosmological constant.Comment: Latex, 22 pages, Revised version accepted in Class. Quantum. Grav., references adde

    Scratching resistance of SiC-rich nano-coatings produced by noble gas ion mixing

    Get PDF
    SiC-rich nano-layers were produced at room temperature by applying ion beam mixing of various C/Si multilayer structures using argon and xenon ions with energy in the range of 40–120 keV and fluences between 0.25 and 3 × 1016 ions/cm2. The mechanical behavior of the layers was characterized by scratch test. The scratching resistance of the ion mixed samples has been measured by standard scratch test applying an atomic-force microscope with a diamond-coated tip (radius < 15 nm) and they were compared to that measured on Si single crystal. The applied load varied in the range of 4–18 μN. The scratching resistance of the samples correlated with the effective areal density of the SiC; with increasing effective areal density the scratch depth decreases. Above sufficiently high effective areal density of SiC the scratch resistance (hardness) of the produced layer was somewhat higher than that of single crystal silicon. Previously it has been shown that such layers have excellent corrosion resistive properties as well. These findings allow to tune and design the mechanical and chemical properties of the SiC protective coatings

    Dynamic scaling of fronts in the quantum XX chain

    Full text link
    The dynamics of the transverse magnetization in the zero-temperature XX chain is studied with emphasis on fronts emerging from steplike initial magnetization profiles. The fronts move with fixed velocity and display a staircase like internal structure whose dynamic scaling is explored both analytically and numerically. The front region is found to spread with time sub-diffusively with the height and the width of the staircase steps scaling as t^(-1/3) and t^1/3, respectively. The areas under the steps are independent of time, thus the magnetization relaxes in quantized "steps" of spin-flips.Comment: 4 pages, 3 eps figures, RevTe

    Substance p immunoreactivity exhibits frequent colocalization with kisspeptin and neurokinin B in the human infundibular region.

    Get PDF
    Neurons synthesizing neurokinin B (NKB) and kisspeptin (KP) in the hypothalamic arcuate nucleus represent important upstream regulators of pulsatile gonadotropin-releasing hormone (GnRH) neurosecretion. In search of neuropeptides co-expressed in analogous neurons of the human infundibular nucleus (Inf), we have carried out immunohistochemical studies of the tachykinin peptide Substance P (SP) in autopsy samples from men (21-78 years) and postmenopausal (53-83 years) women. Significantly higher numbers of SP-immunoreactive (IR) neurons and darker labeling were observed in the Inf of postmenopausal women than in age-matched men. Triple-immunofluorescent studies localized SP immunoreactivity to considerable subsets of KP-IR and NKB-IR axons and perikarya in the infundibular region. In postmenopausal women, 25.1% of NKB-IR and 30.6% of KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled. Triple-, double- and single-labeled SP-IR axons innervated densely the portal capillaries of the infundibular stalk. In quadruple-labeled sections, these axons formed occasional contacts with GnRH-IR axons. Presence of SP in NKB and KP neurons increases the functional complexity of the putative pulse generator network. First, it is possible that SP modulates the effects of KP and NKB in axo-somatic and axo-dendritic afferents to GnRH neurons. Intrinsic SP may also affect the activity and/or neuropeptide release of NKB and KP neurons via autocrine/paracrine actions. In the infundibular stalk, SP may influence the KP and NKB secretory output via additional autocrine/paracrine mechanisms or regulate GnRH neurosecretion directly. Finally, possible co-release of SP with KP and NKB into the portal circulation could underlie further actions on adenohypophysial gonadotrophs

    Black Hole Entropy in the presence of Chern-Simons Terms

    Get PDF
    We derive a formula for the black hole entropy in theories with gravitational Chern-Simons terms, by generalizing Wald's argument which uses the Noether charge. It correctly reproduces the entropy of three-dimensional black holes in the presence of Chern-Simons term, which was previously obtained via indirect methods.Comment: v2: 12 pages, added reference

    New Dynamic Monte Carlo Renormalization Group Method

    Full text link
    The dynamical critical exponent of the two-dimensional spin-flip Ising model is evaluated by a Monte Carlo renormalization group method involving a transformation in time. The results agree very well with a finite-size scaling analysis performed on the same data. The value of z=2.13±0.01z = 2.13 \pm 0.01 is obtained, which is consistent with most recent estimates
    corecore