64 research outputs found
K19 capsular polysaccharide of acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster
© 2016 The Authors.Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was→3)-α-D-GalpNAc-(1→4)-α-D-GalpNAcA-(1→3)-β-D-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes
Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice
IMPORTANCE: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes.
OBJECTIVE: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes.
DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals.
EXPOSURES: Genetic test results.
MAIN OUTCOMES AND MEASURES: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms.
RESULTS: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%).
CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes
Internal combustion engine as electrical machine
The features of the development of power units of power machines are considered.
Competition, imposed by the construction of electric vehicles, requires a review of the physical
processes occurring in the internal combustion engine (ICE). The combustion gases are a
plasma. An important act is the emission of free electrons. It is proposed to consider ICE as an
electric machine. The modernization of the structural elements of the combustion chamber is
being discussed. They must become sources of free electrons. Thermodynamic processes are
considered to be electrodynamic. The goal is the formation of increased concentrations of free
electrons. It is proposed to place electron emission catalysts on the inner surfaces of the
combustion chamber. Vibrations of the internal elements of the combustion chamber are
considered as a source of triboelectricity
Concept of modernization of input device of oil and gas separator
The process of defoaming in oil production is discussed. This technology is important in oil and gas fields. Today, the technology of separating the gas fraction is based on chemical catalysis. The use of mechanical technologies improves the economics of the process. Modernization of the separator input device is based on the use of long thin tubes. The chosen length of the tubes is two orders of magnitude larger than the diameter. The separation problem is solved by creating a high centrifugal acceleration. The tubes of the input device are connected in parallel and divide the input stream into several arms. The separated fluid flows are directed tangentially into the working tubes to create a vortex motion. The number of tubes connected in parallel is calculated in accordance with the flow rate of the fluid. The connection of the working tubes to the supply line is made in the form of a flange. This connection allows carrying out maintenance without stopping the flow of fluid. An important feature of this device is its high potential for further modernization. It is concerned with the determination of the parameters of the tubes and the connection geometry in the construction of a single product
Principles of designing well separators
Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.Vortex motion is effectively used in the development of wellbore filter designs. Further development of the principles of such design requires the development of some principles based on experimental observations and computer modeling. A constructive analogy between the wellbore filter and the Ranque vortex tube is shown. The results of experimental and theoretical studies of the vortex tube are applied as a basis for designing a well separator. Recommendations are formulated regarding the radius of the inner branch pipe of the downhole filter placed in the body. Approaches are discussed when choosing the length of the working section of the well separator, as well as the choice of the shape of the input cochlear, the size of the outlet diaphragm, and the shape of the sand suspension window. © 2018 Institut za Istrazivanja. All Rights Reserved
K19 capsular polysaccharide of acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster
© 2016 The Authors.Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was→3)-α-D-GalpNAc-(1→4)-α-D-GalpNAcA-(1→3)-β-D-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes
K19 capsular polysaccharide of acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster
© 2016 The Authors.Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was→3)-α-D-GalpNAc-(1→4)-α-D-GalpNAcA-(1→3)-β-D-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes
K19 capsular polysaccharide of acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster
© 2016 The Authors.Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was→3)-α-D-GalpNAc-(1→4)-α-D-GalpNAcA-(1→3)-β-D-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes
STRUCTURAL AND FUNCTIONAL STATE OF POLYMER COATING OF CORONARY STENTS AFTER EFFECTS OF THE ACCELERATED ELECTRONS FLOW
The article presents the results of investigation of the electron-beam processing effect by a stream of accelerated electrons on coronary stents with a drug coating. Experiments on the visualization of the polymer coating have been carried out, the parameters of the kinetics of the antiproliferative substance as a function of the radiation dose have been determined. Integrity of the drug-coated stents has been visually assessed by scanning electron microscopy and optical microscopy. The release kinetic have been evaluated by high-performance liquid chromatography method. It has been established that electron beam treatment by the stream of accelerated electrons leads to non-dangerous deformations of the coronary stents drug coating and to the increased yield of antiproliferative substance. Deformation sites of the elution system appear on the surface of the drug-eluting stents after electron-beam treatment by the stream of accelerated electrons at a dose of 1.5 and 3 Mrad. Prolonged diffusion of rapamycin from the treated stent creates concentrations greater than those when used untreated stent and depends on the radiation load in a dose-dependent manner. Stent electron beam treatment by the stream of accelerated electrons provides a high gradient of release of the antiproliferative substance from the elution system, exceeding that without treatment, for 10 days. Comparison of efficiency and safety allows us to consider the technology of electron beam processing as promising for the introduction into coronary stents production
- …