150 research outputs found
A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing
We propose the first multi-task learning model for joint Vietnamese word
segmentation, part-of-speech (POS) tagging and dependency parsing. In
particular, our model extends the BIST graph-based dependency parser
(Kiperwasser and Goldberg, 2016) with BiLSTM-CRF-based neural layers (Huang et
al., 2015) for word segmentation and POS tagging. On Vietnamese benchmark
datasets, experimental results show that our joint model obtains
state-of-the-art or competitive performances.Comment: In Proceedings of the 17th Annual Workshop of the Australasian
Language Technology Association (ALTA 2019
An improved neural network model for joint POS tagging and dependency parsing
We propose a novel neural network model for joint part-of-speech (POS)
tagging and dependency parsing. Our model extends the well-known BIST
graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating
a BiLSTM-based tagging component to produce automatically predicted POS tags
for the parser. On the benchmark English Penn treebank, our model obtains
strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+%
absolute improvements to the BIST graph-based parser, and also obtaining a
state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental
results on parsing 61 "big" Universal Dependencies treebanks from raw texts
show that our model outperforms the baseline UDPipe (Straka and Strakov\'a,
2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS
score. In addition, with our model, we also obtain state-of-the-art downstream
task scores for biomedical event extraction and opinion analysis applications.
Our code is available together with all pre-trained models at:
https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, to appea
A Robust Transformation-Based Learning Approach Using Ripple Down Rules for Part-of-Speech Tagging
In this paper, we propose a new approach to construct a system of
transformation rules for the Part-of-Speech (POS) tagging task. Our approach is
based on an incremental knowledge acquisition method where rules are stored in
an exception structure and new rules are only added to correct the errors of
existing rules; thus allowing systematic control of the interaction between the
rules. Experimental results on 13 languages show that our approach is fast in
terms of training time and tagging speed. Furthermore, our approach obtains
very competitive accuracy in comparison to state-of-the-art POS and
morphological taggers.Comment: Version 1: 13 pages. Version 2: Submitted to AI Communications - the
European Journal on Artificial Intelligence. Version 3: Resubmitted after
major revisions. Version 4: Resubmitted after minor revisions. Version 5: to
appear in AI Communications (accepted for publication on 3/12/2015
A Mixture Model for Learning Multi-Sense Word Embeddings
Word embeddings are now a standard technique for inducing meaning
representations for words. For getting good representations, it is important to
take into account different senses of a word. In this paper, we propose a
mixture model for learning multi-sense word embeddings. Our model generalizes
the previous works in that it allows to induce different weights of different
senses of a word. The experimental results show that our model outperforms
previous models on standard evaluation tasks.Comment: *SEM 201
- …