150 research outputs found

    A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing

    Get PDF
    We propose the first multi-task learning model for joint Vietnamese word segmentation, part-of-speech (POS) tagging and dependency parsing. In particular, our model extends the BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) with BiLSTM-CRF-based neural layers (Huang et al., 2015) for word segmentation and POS tagging. On Vietnamese benchmark datasets, experimental results show that our joint model obtains state-of-the-art or competitive performances.Comment: In Proceedings of the 17th Annual Workshop of the Australasian Language Technology Association (ALTA 2019

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea

    A Robust Transformation-Based Learning Approach Using Ripple Down Rules for Part-of-Speech Tagging

    Full text link
    In this paper, we propose a new approach to construct a system of transformation rules for the Part-of-Speech (POS) tagging task. Our approach is based on an incremental knowledge acquisition method where rules are stored in an exception structure and new rules are only added to correct the errors of existing rules; thus allowing systematic control of the interaction between the rules. Experimental results on 13 languages show that our approach is fast in terms of training time and tagging speed. Furthermore, our approach obtains very competitive accuracy in comparison to state-of-the-art POS and morphological taggers.Comment: Version 1: 13 pages. Version 2: Submitted to AI Communications - the European Journal on Artificial Intelligence. Version 3: Resubmitted after major revisions. Version 4: Resubmitted after minor revisions. Version 5: to appear in AI Communications (accepted for publication on 3/12/2015

    A Mixture Model for Learning Multi-Sense Word Embeddings

    Full text link
    Word embeddings are now a standard technique for inducing meaning representations for words. For getting good representations, it is important to take into account different senses of a word. In this paper, we propose a mixture model for learning multi-sense word embeddings. Our model generalizes the previous works in that it allows to induce different weights of different senses of a word. The experimental results show that our model outperforms previous models on standard evaluation tasks.Comment: *SEM 201
    • …
    corecore