48 research outputs found

    Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis

    Get PDF
    Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association

    Enhanced Silver Nanoparticle Synthesis by Escherichia Coli Transformed with Candida Albicans Metallothionein Gene

    No full text
    In this study, the metallothionein gene of Candida albicans (C. albicans) was assembled by polymerase chain reaction (PCR), inserted into pUC19 vector, and further transformed into Escherichia coli (E. coli) DH5α cells. The capacity of these recombinant E. coli DH5α cells to synthesize silver nanoparticles was examined. Our results demonstrated that the expression of C. albicans metallothionein in E. coli promoted the bacterial tolerance to metal ions and increased yield of silver nanoparticle synthesis. The compositional and morphological analysis of the silver nanoparticles revealed that silver nanoparticles synthesized by the engineered E. coli cells are around 20 nm in size, and spherical in shape. Importantly, the silver nanoparticles produced by the engineered cells were more homogeneous in shape and size than those produced by bacteria lack of the C. albicans metallothionein. Our study provided preliminary information for further development of the engineered E. coli as a platform for large-scale production of uniform nanoparticles for various applications in nanotechnology

    Enhanced Extracellular Synthesis of Gold Nanoparticles by Soluble Extracts from Escherichia coli Transformed with Rhizobium tropici Phytochelatin Synthase Gene

    No full text
    Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation

    Biogenic Silver Nanoparticles Processed Twice Using 8M Urea Exhibit Superior Antibacterial and Antifungal Activity to Commercial Chemically Synthesized Counterparts

    No full text
    Biogenic silver nanoparticles (b-AgNPs) were produced extracellularly using a cell lysate of genetically modified Escherichia coli and subdivided into three groups. Each group received a different treatment to determine which one best removed residual cell lysate material. The first group was treated twice using only water (water ×2), the second using 8M urea once (8M urea ×1), and the third using 8M urea twice (8M urea ×2). Subsequently, each group was assessed for its ability to inhibit the growth of six bacterial and two fungal pathogens. Testing was accomplished using the minimum inhibitory concentration (MIC) method. Commercially produced c-AgNPs were included for comparison. In all cases, the b-AgNPs (8M urea ×2) demonstrated the greatest inhibition of microbe growth. Conversely, the commercial AgNPs failed to show any growth inhibition at 10 µg/mL the highest concentration tested. The greater antibacterial activity of the b-AgNPs (8M urea ×2) over both b-AgNPs (8M urea ×1) and b-AgNPs (water ×2) is thought to be due to a larger degree of biofunctionalization (coating) occurring during the two sequential 8M urea treatments

    Biogenic Silver Nanoparticles Processed Twice Using 8M Urea Exhibit Superior Antibacterial and Antifungal Activity to Commercial Chemically Synthesized Counterparts

    No full text
    Biogenic silver nanoparticles (b-AgNPs) were produced extracellularly using a cell lysate of genetically modified Escherichia coli and subdivided into three groups. Each group received a different treatment to determine which one best removed residual cell lysate material. The first group was treated twice using only water (water ×2), the second using 8M urea once (8M urea ×1), and the third using 8M urea twice (8M urea ×2). Subsequently, each group was assessed for its ability to inhibit the growth of six bacterial and two fungal pathogens. Testing was accomplished using the minimum inhibitory concentration (MIC) method. Commercially produced c-AgNPs were included for comparison. In all cases, the b-AgNPs (8M urea ×2) demonstrated the greatest inhibition of microbe growth. Conversely, the commercial AgNPs failed to show any growth inhibition at 10 µg/mL the highest concentration tested. The greater antibacterial activity of the b-AgNPs (8M urea ×2) over both b-AgNPs (8M urea ×1) and b-AgNPs (water ×2) is thought to be due to a larger degree of biofunctionalization (coating) occurring during the two sequential 8M urea treatments

    An Efficient 2D DOA Estimation Algorithm Based on OMP for Rectangular Array

    No full text
    Recently, orthogonal matching pursuit (OMP) has been widely used in direction of arrival (DOA) studies, which not only greatly improves the resolution of DOA, but can also be applied to single-snapshot and coherent source cases. When applying the OMP algorithm to the rectangular array DOA of the millimeter-wave radar, it is necessary to reshape the two-dimensional (2D) signal into a long one-dimensional (1D) signal. However, the long 1D signal will greatly increase the number and length of atoms in the complete dictionary of the OMP algorithm, which will greatly increase the amount of computation. Taking advantage of the sparsity of targets in the DOA space, an efficient 2D DOA estimation algorithm based on OMP for rectangular array is proposed. The main idea is to reduce the number of atoms in the complete dictionary of the OMP algorithm, thereby greatly reducing the amount of computation required. A simulation verifies that the efficiency of the proposed algorithm is much higher than the conventional algorithm with almost the same estimation accuracy

    Ionic Liquids as Protein Crystallization Additives

    No full text
    Among its attributes, the mythical philosopher’s stone is supposedly capable of turning base metals to gold or silver. In an analogous fashion, we are finding that protein crystallization optimization using ionic liquids (ILs) often results in the conversion of base protein precipitate to crystals. Recombinant inorganic pyrophosphatases (8 of the 11 proteins) from pathogenic bacteria as well as several other proteins were tested for optimization by 23 ILs, plus a dH2O control, at IL concentrations of 0.1, 0.2, and 0.4 M. The ILs were used as additives, and all proteins were crystallized in the presence of at least one IL. For 9 of the 11 proteins, precipitation conditions were converted to crystals with at least one IL. The ILs could be ranked in order of effectiveness, and it was found that ~83% of the precipitation-derived crystallization conditions could be obtained with a suite of just eight ILs, with the top two ILs accounting for ~50% of the hits. Structural trends were found in the effectiveness of the ILs, with shorter-alkyl-chain ILs being more effective. The two top ILs, accounting for ~50% of the unique crystallization results, were choline dihydrogen phosphate and 1-butyl-3-methylimidazolium tetrafluoroborate. Curiously, however, a butyl group was present on the cation of four of the top eight ILs

    掺氮介孔炭作为双功能材料用于氧还原与超级电容器

    No full text
    以壳聚糖为含氮碳源,正硅酸乙酯为软模板,硝酸镍为催化剂,通过简单的低温水热法及后续炭化,成功合成出掺氮介孔炭材料(NMC-1). NMC-1含有多孔结构以及氮氧等杂原子,能提高其电催化性能、双电层电容与赝电容.由于NMC-1在碱液中表现出显著的催化氧还原反应活性和具有较高的超级电容器比电容(在0.2 A/g时为252 F/g)及好的循环稳定性,因此,它有可能作为一种可再生、环保的双功能材料同时应用于燃料电池与超级电容器领域

    JUN-induced super-enhancer RNA forms R-loop to promote nasopharyngeal carcinoma metastasis

    No full text
    Abstract Oncogenic super-enhancers (SEs) generate noncoding enhancer/SE RNAs (eRNAs/seRNAs) that exert a critical function in malignancy through powerful regulation of target gene expression. Herein, we show that a JUN-mediated seRNA can form R-loop to regulate target genes to promote metastasis of nasopharyngeal carcinoma (NPC). A combination of global run-on sequencing, chromatin-immunoprecipitation sequencing, and RNA sequencing was used to screen seRNAs. A specific seRNA associated with NPC metastasis (seRNA-NPCM) was identified as a transcriptional regulator for N-myc downstream-regulated gene 1 (NDRG1). JUN was found to regulate seRNA-NPCM through motif binding. seRNA-NPCM was elevated in NPC cancer tissues and highly metastatic cell lines, and promoted the metastasis of NPC cells in vitro and in vivo. Mechanistically, the 3’ end of seRNA-NPCM hybridizes with the SE region to form an R-loop, and the middle segment of seRNA-NPCM binds to heterogeneous nuclear ribonucleoprotein R (hnRNPR) at the promoter of distal gene NDRG1 and neighboring gene tribbles pseudokinase 1 (TRIB1). These structures promote chromatin looping and long-distance chromatin interactions between SEs and promoters, thus facilitating NDRG1 and TRIB1 transcription. Furthermore, the clinical analyses showed that seRNA-NPCM and NDRG1 were independent prognostic factors for NPC patients. seRNA-NPCM plays a critical role in orchestrating target gene transcription to promote NPC metastasis
    corecore