624 research outputs found

    Interpretation and Reflection on Goodness in Sakya Legshad and Bacon Essays

    Get PDF
    In the 21st century of the in-depth globalization, various problems have emerged such as regional conflicts, epidemics, the environmental deterioration, climate warming, earthquake and other uncertainty. Seeking some common and desirable values is not only the basic needs of harmonious society, but also the inevitable result of human civilization evolution. Sakya legshad, the 1st collection of Chinese Tibetan aphorisms, and Bacon’s Essays, the Britain prose collection, are the world-wide treasures of wisdom, many chapters of which talk about the concept and practice of goodness. It is of immeasurable importance to reread these classics for interpretations of goodness so that their excellent traditional culture can continue to nourish and enlighten today’s moral education, promote the construction of the common views on the good and the evil, awaken people a moral consciousness, and enlighten them to hold good will and do good deeds for sustainable social harmony and world peace

    Critical Scenario Identification for Testing of Autonomous Driving Systems

    Get PDF
    Background: Autonomous systems have received considerable attention from academia and are adopted by various industrial domains, such as automotive, avionics, etc. As many of them are considered safety-critical, testing is indispensable to verify their reliability and safety. However, there is no common standard for testing autonomous systems efficiently and effectively. Thus new approaches for testing such systems must be developed.Aim: The objective of this thesis is two-fold. First, we want to present an overview of software testing of autonomous systems, i.e., relevant concepts, challenges, and techniques available in academic research and industry practice. Second, we aim to establish a new approach for testing autonomous driving systems and demonstrate its effectiveness by using real autonomous driving systems from industry.Research Methodology: We conducted the research in three steps using the design science paradigm. First, we explored the existing literature and industry practices to understand the state of the art for testing of autonomous systems. Second, we focused on a particular sub-domain - autonomous driving - and proposed a systematic approach for critical test scenario identification. Lastly, we validated our approach and employed it for testing real autonomous driving systems by collaborating with Volvo Cars.Results: We present the results as four papers in this thesis. First, we conceptualized a definition of autonomous systems and classified challenges and approaches, techniques, and practices for testing autonomous systems in general. Second, we designed a systematic approach for critical test scenario identification. We employed the approach for testing two real autonomous driving systems from the industry and have effectively identified critical test scenarios. Lastly, we established a model for predicting the distribution of vehicle-pedestrian interactions for realistic test scenario generation for autonomous driving systems. Conclusion: Critical scenario identification is a favorable approach to generate test scenarios and facilitate the testing of autonomous driving systems in an efficient way. Future improvement of the approach includes (1) evaluating the effectiveness of the generated critical scenarios for testing; (2) extending the sub-components in this approach; (3) combining different testing approaches, and (4) exploring the application of the approach to test different autonomous systems

    The Gaussian normal basis and its trace basis over finite fields

    Get PDF
    AbstractIt is well known that normal bases are useful for implementations of finite fields in various applications including coding theory, cryptography, signal processing, and so on. In particular, optimal normal bases are desirable. When no optimal normal basis exists, it is useful to have normal bases with low complexity. In this paper, we study the type k(â©ľ1) Gaussian normal basis N of the finite field extension Fqn/Fq, which is a classical normal basis with low complexity. By studying the multiplication table of N, we obtain the dual basis of N and the trace basis of N via arbitrary medium subfields Fqm/Fq with m|n and 1â©˝mâ©˝n. And then we determine all self-dual Gaussian normal bases. As an application, we obtain the precise multiplication table and the complexity of the type 2 Gaussian normal basis and then determine all optimal type 2 Gaussian normal bases

    China Customs IPR Enforcement

    Get PDF

    Macroscopic non-destructive evaluation by modal analysis techniques

    Get PDF
    This dissertation describes an investigation of modal analysis methods for the detection, location, and characterization of flaws or damage in a structure or machine. The type of damage considered in the research was restricted to narrow, rectangular slots in symmetric trapezoidal plates. Both modal testing and finite element methods were used to investigate changes in natural frequencies of a clamped trapezoidal plate for all combinations of three slot lengths and three slot orientations. For modal testing, an impulse hammer was used to excite plate vibration, and a near field microphone was used to measure the response of the test plates. The first five natural frequencies were estimated from the measured frequency response function. Modal shapes associated with the natural frequencies were determined roughly from the phase of the measured frequency response function. Natural frequencies and associated modal shapes were also estimated numerically using the ADINA finite element package. Changes in natural frequencies for four different slot widths were investigated using finite element analysis. The changes in natural frequencies obtained by the two methods were in good agreement for all cases studied, and the results agree well with previously published work for an undamaged plate;The investigation demonstrates that: (1) Slot presence can be detected from the change in natural frequency of the plate. (2) Slot length and angular orientation have significant effect on natural frequencies of the plate. (3) Slot width has no significant effect on natural frequencies of the plates. (4) Slot presence can change the numerical order of the natural frequencies associated with adjacent modes of the plate. (5) Slot presence has little influence on modal shapes;The results demonstrate that impact vibrational testing using a near field microphone as the response transducer is a viable method for macroscopic non-destructive evaluation
    • …
    corecore