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ABSTRACT

Background: Autonomous systems have received considerable attention from
academia and are adopted by various industrial domains, such as automotive,
avionics, etc. As many of them are considered safety-critical, testing is indispens-
able to verify their reliability and safety. However, there is no common standard
for testing autonomous systems efficiently and effectively. Thus new approaches
for testing such systems must be developed.

Aim: The objective of this thesis is two-fold. First, we want to present an overview
of software testing of autonomous systems, i.e., relevant concepts, challenges, and
techniques available in academic research and industry practice. Second, we aim
to establish a new approach for testing autonomous driving systems and demon-
strate its effectiveness by using real autonomous driving systems from industry.
Research Methodology: We conducted the research in three steps using the de-
sign science paradigm. First, we explored the existing literature and industry prac-
tices to understand the state of the art for testing of autonomous systems. Second,
we focused on a particular sub-domain — autonomous driving — and proposed a
systematic approach for critical test scenario identification. Lastly, we validated
our approach and employed it for testing real autonomous driving systems by col-
laborating with Volvo Cars.

Results: We present the results as four papers in this thesis. First, we conceptual-
ized a definition of autonomous systems and classified challenges and approaches,
techniques, and practices for testing autonomous systems in general. Second, we
designed a systematic approach for critical test scenario identification. We em-
ployed the approach for testing two real autonomous driving systems from the
industry and have effectively identified critical test scenarios. Lastly, we estab-
lished a model for predicting the distribution of vehicle—pedestrian interactions
for realistic test scenario generation for autonomous driving systems.
Conclusion: Critical scenario identification is a favorable approach to generate
test scenarios and facilitate the testing of autonomous driving systems in an ef-
ficient way. Future improvement of the approach includes (1) evaluating the ef-
fectiveness of the generated critical scenarios for testing; (2) extending the sub-
components in this approach; (3) combining different testing approaches, and (4)
exploring the application of the approach to test different autonomous systems.
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INTRODUCTION

1 Background

Autonomous systems have received considerable interest in academic research and
have been used in different application domains, such as automotive, avionic, and
robotics [43]. A fully autonomous system, for example, a level-5 autonomous ve-
hicle by SAE International', has to properly handle various situations in real road
traffic without a human driver [26], including those hazard occasions where an
immediate reaction is required to avoid colliding with other road users or infras-
tructures.

Despite the widespread attention and popular trend of using autonomous sys-
tems for different purposes, many autonomous systems are considered both safety-
critical and mission-critical. Thus effective testing is essential for verifying their
safety and reliability. Inadequate and ineffective testing may fail to discover the
defects and misbehavior of the system, consequently leading to severe accidents
or significant economic losses [99]. Examples of such failures are the crash of
ExoMars Mars Lander in 2016, which was analysed to be an implementation error
and an estimated 350 million US dollar in loss [48], and fatal accidents caused by
Tesla and Ubers’ autonomous vehicles where frontal objects on the road were not
correctly identified and consequently hit by the vehicles [64, 110].

Fully autonomous systems need to operate in unanticipated environments with-
out human supervision and adapt their behaviors accordingly to fulfill the tasks
appropriately. Efficient testing of such systems is notoriously tricky, and exhaus-
tive testing is impractical due to the uncountable number of situations that may
occur [45]. Taking autonomous driving systems as an example, the number of sce-
narios in real-world traffic is potentially infinite, and identifying all possible sce-
narios as well as covering them in testing is impractical, if not impossible [35,36].

The advancement of emerging technologies like machine learning have fos-
tered the development of highly autonomous features, for example, real-time ob-
ject detection based on the perceived environment and stepwise decision-making

"https://www.sae.org/



2 INTRODUCTION

through reinforcement learning. Nevertheless, it also adds an order of magnitude
of complexity and uncertainty for testing autonomous systems [62]. There is no
definitive way for testing or certifying such systems yet [45,96]. Thus, new testing
techniques and approaches are developed and need to be extended to evaluate the
safety and reliability of autonomous systems, for example, using simulation and
critical scenario-based testing approach.

2 Research Goals

The general goal of this thesis is to improve software testing of autonomous sys-
tems by exploring and developing new techniques and approaches for testing. Ac-
cordingly, we need to understand the current state of the area, design a new solution
and validate its feasibility in a real setting. Based on that, we have defined three
research goals in a sequential order. The first goal is to explore the challenges
and available techniques for testing autonomous systems in general and identify
research gaps. Subsequently, the second and third goals are to design an interven-
tion to address the gaps for testing by focusing on a sub-domain of autonomous
systems — autonomous driving — and validate the intervention in an industrial con-
text by collaborating with the automaker Volvo Cars.

2.1 Goal | — Exploration of the Field

Given the open challenges of testing autonomous systems and that no broad survey
in this field was found, the first goal is to explore this area and get an overview of
the state of the art. On one hand, this goal aims to get a broad view of the field
by surveying different types of autonomous systems. On the other hand, this goal
explores both existing academic literature and industry practices to get different
perspectives. Achieving this goal helps us to understand the field and identify the
research gaps as well as to search for solution candidates.

Specifically, relevant concepts for testing autonomous systems need to be de-
fined, challenges and available techniques, as well as approaches and practices,
need to be understood and classified to set a basis for designing feasible solutions
for testing autonomous systems.

2.2 Goal Il — Designing the Solution

Testing is significant for verifying the reliability and safety of autonomous sys-
tems, yet no common and definitive way for testing such systems has been estab-
lished. Thus there is a need for studying and developing new testing techniques
and approaches. The second goal is to design a solution based on existing tools
and techniques to support the testing of autonomous systems effectively and effi-
ciently.
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Since different autonomous systems employ different functional and safety re-
quirements and operate in distinct operational environments, this goal focuses on
one particular sub-domain of autonomous systems — autonomous driving — and
provides a systematic approach to facilitate testing of different autonomous driv-
ing systems.

2.3 Goal lll — Validating the Solution

The third goal is to validate the intervention in a real industrial context. We do this
by applying the approach in an industrial setting and demonstrate its feasibility
for testing real autonomous driving systems. By reaching this goal, we show that
the solution we provide in the thesis is feasible to use in practice and can support
testing effectively.

Addressing this goal relies on access to real industrial context and autonomous
driving systems from the industry. We collaborate with the automaker Volvo Cars
and verify that our approach is feasible and effective for testing real autonomous
driving systems from them. In addition, the validation also gives insights on what
can be extended or refined in this approach in future work.

3 Related Work

This section first presents the existing studies that report software testing of au-
tonomous systems in general and autonomous driving systems in particular. The
second part describes scenario-based testing approaches and how they are used for
testing the autonomous driving systems based on the existing literature.

3.1 Testing of Autonomous Systems

Existing studies have explored the characteristics of autonomous systems and the
challenges and approaches for testing such systems. Among them, Helle et al.
present an overview of autonomous systems and claim that traditional testing ap-
proaches, that aim for fault prevention, detection, and removal, are insufficient for
autonomous systems because of unknown situations that may happen during oper-
ation and their dynamically changing behaviors [45]. They also investigated test-
ing techniques and report mostly model-based approaches for testing autonomous
systems. Harel et al. explored challenges for testing autonomous systems in gen-
eral. They call for a foundation for testing those systems to address the challenges
of specifying and analysing system behaviors, as well as to combine the model-
based and data-driven approaches [43]. In addition, Sifakis defined an architec-
ture of autonomous systems and theories how such systems would be trustwor-
thy [95,96].

Koopman et al. and Knauss et al. have surveyed mainly the challenges and
provide inputs for testing autonomous driving systems. Koopman et al. list the
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major difficulties for testing as (1) infeasibility of exhaustive testing, (2) no hu-
man driver involved, (3) complex system requirements, and (4) non-deterministic
algorithms used, such as machine learning techniques [62]. In contrast, Knauss et
al. explored the challenges of testing autonomous driving systems based on exist-
ing literature, and focus groups and interviews with industry practitioners. Among
the 13 challenges they extracted, how simulation tests can smoothly support real-
istic testing of autonomous driving systems, and the complexity and explosion of
test scenarios, are ranked the two most prominent challenges for testing [61].

In order to address the said gaps, Rajabli et al. present a systematic literature
review on software verification for autonomous driving [84]; Kang et al. conducted
a comprehensive survey of 22 simulation platforms and 37 available data sets for
testing autonomous driving systems [56]. Similarly, Rosique et al. did a systematic
literature review of the simulators and perception systems for testing autonomous
driving systems [86]. In addition, Bhat et al. present tools and methods for testing
autonomous vehicles at different engineering stages [15]. Still, there is no univer-
sal definition of what constitutes an autonomous system and which challenges and
techniques exist for testing autonomous systems in general. Exploring existing
literature and industry practices, which is the first goal of this thesis, is critical to
understand and improve the field testing of autonomous systems.

3.2 Scenario-based Testing Approaches

Common approaches for testing autonomous driving systems include substantial
real-world testing that places the system in its real operational environment and
continuously observes the system’s performance under different situations, or col-
lecting real driving data at a large scale to enable testing and analysis in simulation.
Kalra et al. have modeled the distance of driving tests needed to prove the safety of
autonomous vehicles compared to human accident rates [55]. They argue that mil-
lions up to billions of miles of driving tests are needed. However, it is implausible
for automakers to conduct that amount of driving test in a cost- and time-efficient
way, especially since some critical situations are rare in real road traffic and may
still not be covered during tests [58, 81]. Similarly, collecting driving data from
real traffic at scale is also expensive and time-consuming, yet the quality of the
collected data and mechanisms for data aggregation still need to be studied.

Using simulation and scenario-based testing is considered a promising alter-
native to complement the approaches mentioned above and facilitate the testing
of autonomous systems in an efficient way [84]. Simulation enables early verifi-
cation of the autonomous driving systems without accessing the vehicle and real
traffic and minimizing the risks of harming other road users. Although simulation
has its limitations — an evident one is low fidelity and limited representation of the
real-world complexities — simulation supports testing of the basic implementation
and system behavior prior to deploying the vehicles in real road traffic [61].
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The scenario-based testing approach plays a crucial role in testing autonomous
driving systems, which aims to reduce the testing effort into a manageable number
of scenarios [85]. Instead of spending testing resources on repetitive scenarios that
expose very low safety risks and require no urgent reaction, critical scenario-based
testing focuses on identifying and testing those most critical scenarios that might
cause collision or near-collision situations or consequences. Ulbrich et al. define
a scenario as a temporal sequence of scenes representing the world model that in-
cludes the road, road users, infrastructures, environment, and weather etc. [105].
Menzel et al. extended this definition into three different abstraction levels [72].
Functional scenarios are usually described in natural language, and logical scenar-
ios are parameterization of functional scenarios by identifying the relevant param-
eters and parameter range and distribution. Concrete scenarios are instantiations
of logical scenarios by assigning concrete values to the parameters.

Different techniques are used to identify or generate critical scenarios for test-
ing autonomous driving systems. Riedmaier et al. [85] present studies on scenario-
based approaches, and Zhang et al. [114] on critical scenario identification ap-
proaches, which both are systematic literature reviews for autonomous driving sys-
tems. Examples of the surveyed approaches include using deep learning for gener-
ating critical test scenarios and search-based algorithms to optimize the generation
of critical scenarios. Scenarios are executed and evaluated as critical with dif-
ferent criteria, for example, using surrogate measurements like Time-to-Collision
(TTC) or Post-Enchroament-Time (PET) [107]. Functional specifications and re-
lated industrial standards (e.g., ISO-26262, ISO/PAS-21448, Responsibility Sen-
sitive Safety) can also be used to derive criticalities for the intended functions.

Although existing studies have reported critical scenario identification for test-
ing autonomous driving systems using different techniques, very few studies pro-
vide a complete solution for it [41]. Existing studies have focused on solving parts
of the critical scenario identification, such as scenario optimization or improving
the scenario representation and simulation, thus not providing a complete approach
for identifying critical scenarios for testing autonomous driving systems. Besides,
existing studies do not validate their approaches in an industrial context with real
autonomous driving systems. Therefore, it is significant to address such gaps and
design a systematic approach for critical scenario identification that is generic for
testing different autonomous driving systems. In addition, the approach should
be validated in industrial context and be feasible to support the testing of real au-
tonomous driving systems.

4 Research Methodology

We used the design science paradigm [88] to guide the work gradually from the
problem domain to the solution domain. The design science paradigm is described
as a frame for depicting, analyzing, and communicating software engineering re-
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|

Problem Conceptualization H

Solution Design

Solution Validation

Exploration of challenges,
techniques, and approaches
for testing autonomous
systems based on literature
and industry practices

Designing interventions of
critical scenario generation
for testing autonomous
driving systems based on
existing engineering tools

Validation of solutions for
testing real autonomous
driving systems from the
industry by collaborating
with Volvo Cars

Step 1

Step 11

Step 111

Figure 1: Mapping of the three research steps (i.e, bottom text boxes) and corre-
sponding research activities (i.e., middle edged text boxes) into the design science
elements (i.e., top text boxes connected with arrows). The arrows between differ-
ent elements indicate how one activity can support or provide input to the next.

search and contains three major elements — problem conceptualization, solution
design, and validation. A technological rule (TR) is often used in design science
to describe the research contributions. Technological rules can be extracted at dif-
ferent level of abstractions and are usually presented in the form of 7O ACHIEVE
<effect> IN <context> DO <intervention> [88].

We formulated two technological rules in this thesis as listed below, including
a general one (i.e., TR 1) with a broad scope and a high level of abstraction, and a
concrete one (i.e., TR 2) with a more narrow scope and concrete intervention.

e TR 1: To improve software testing of autonomous systems, explore and de-
sign new testing approaches.

* TR 2: To test autonomous driving systems effectively and efficiently, identify
critical test scenarios in simulation.

We have conducted the thesis in three research steps. We summarize the re-
search activities for each step and how the activities are mapped under each ele-
ment of the design science paradigm in Figure 1. We explored and conceptualized
the problems for testing autonomous systems in the first step. Then we focused
on the solution domain in the second step and designed a critical scenario identi-
fication approach to address the explosion of test scenarios. In the third step, the
approach was employed to test real autonomous driving systems as validation and
was extended to improve the sub-components further.

4.1 Step I: Problem Conceptualization

The first step of the thesis is essentially aligned with the first goal as described in
Section 2 — to explore the field testing of autonomous systems, identify existing
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problems, and investigate any technical solutions available. In this step, we have
to understand:

1. How are autonomous systems defined, and which concepts exist?
2. Which challenges for testing autonomous systems remain?

3. What techniques, approaches, and practices for testing autonomous systems
are available?

This step had a broad scope to include findings and insights from different
sources as an exploratory stage. We first studied the existing literature on soft-
ware testing of autonomous systems and then explored the industry practices by
having a focus group discussion and interviews with the industry practitioners.
Results of this step is Paper I which we summarize in Section 5.1, where con-
cepts of autonomous systems were surveyed, challenges and available techniques,
approaches, and practices for testing autonomous systems were classified.

4.2 Step II: Solution Design

Based on the previous step, we identified a significant challenge that impedes the
testing of autonomous systems — the infinite number of test scenarios due to the
unpredictable and complex environment that is unknown during design. The sec-
ond step was to create an intervention to address that gap — generating critical test
scenarios for autonomous systems, based on existing tools and techniques. As
introduced earlier in Section 3, using simulation and scenario-based testing ap-
proaches is considered a promising alternative to reduce the testing effort into a
manageable number of scenarios and focus on the most critical ones in the test.

In this step, we focused on a particular sub-domain of autonomous systems —
autonomous driving — and set our study in an industrial context by collaborating
with the automaker Volvo Cars. We studied different engineering tools based on
their environment, such as SPAS simulation platform and modeFroniter — a pro-
cess optimization tool. We integrated the tools and defined a workflow to form a
complete approach for critical scenario identification for testing autonomous driv-
ing systems. The approach is reported in Paper II and summarized in Section 5.2.
The tools employed are exchangeable, meaning that any tools involved can be
replaced with other similar tools. Thus, the approach is generic for testing differ-
ent autonomous driving and not subject to a particular function, tool, or technical
environment that is intended.

4.3 Step llI: Solution Validation

The third step validated the feasibility of the solution from the previous step in an
industrial context and is reported in Paper III, which is summarized in Section 5.3.
Specifically, our industrial partner Volvo Cars provided an early version of two
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autonomous driving systems, namely an autonomous driving system and an au-
tonomous parking system. The approach was then employed to generate critical
scenarios which can be used to test those systems either in a simulated environ-
ment or in real road traffic.

Going beyond validating the approach’s feasibility; the validation step also
gave insights into what components were missing when implementing such an
approach in practice, e.g., realistic distribution of parameters for scenario gen-
eration. Subsequently, we established a model that predicts the worst-case TTC
distribution of vehicle—pedestrian interaction and demonstrated its potential use
for testing, e.g., autonomous emergency braking systems. The model is presented
in Paper IV, which is summarized in Section 5.4.

5 Results and Contributions

The research has resulted in four papers, two of which are published, and two are
released as pre-print manuscripts. Paper I presents the results of the first step as
described in Section 4, paper II the results of the second step, and paper IIT and IV
are pre-prints that describe the work and results for the third step.

5.1 Paper I: Concepts in Testing of Autonomous Sys-
tems: Academic Literature and Industry Practice

In this paper, a pool of 45 papers on software testing of autonomous systems
were synthesized with a focus group discussion of eight industrial practitioners
and interviews with five experts in the autonomous domain. As a result, we con-
ceptualized a definition of autonomous systems, and we classified the challenges,
techniques, approaches, and practices for testing autonomous systems in general.

Our conceptualization defines autonomous systems, as systems that can ful-
fill specific tasks within an unstructured environment without human supervision.
Four aspects of the systems are articulated — (1) self-aware of the environment and
system states; (2) decision-making based on analysis of the situation; (3) adap-
tation based on goals and history; and (4) actuation of the plans derived from
decision-making. The main challenges for testing autonomous systems are: the
unpredictable environment, the complexity of the system requirements, design,
and operation scenarios, data accessibility, and missing standard guidelines for
testing. Examples of available techniques and approaches for testing autonomous
systems include engineering recommendations, such as using simulation and the
V-model paradigm, and techniques, such as model-based approaches, combinato-
rial testing, scenario-based approaches, and metamorphic testing.

As there is no universal definition that describes autonomous systems in gen-
eral, one contribution in this paper is the conceptualization of what constitutes
an autonomous system. We also provide a comprehensive list of techniques, ap-
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proaches, and practices for testing autonomous systems. The results of this paper
addressed the first goal of the thesis and helped us understanding the area and
supported the design of our intervention in later steps. We noticed that testing of
autonomous systems is intricate and the potential test scenarios are extensive, and
using simulation and scenario-based testing is considered an efficient alternative
to reduce overall testing effort and cost.

5.2 Paper II: An Industrial Workbench for Test Scenario
Identification for Autonomous Driving Software

In this short paper, we established a workbench for critical scenario identification
for testing autonomous driving systems based on our collaboration with Volvo
Cars. The workbench integrates three existing engineering tools and a workflow
for critical scenario identification. The tools involved are exchangeable, meaning
that they can be substituted with any similar tools, so the workbench is, in princi-
ple, generic for testing any autonomous driving systems.

The three tools used include: (1) A requirement and verification management
tool stores the system specifications, design documents, and testing artifacts; (2)
A simulation platform — SPAS — simulates the scenario and records the simulation
results; (3) An optimization tool — modeFrontier — optimizes the generation of
scenarios based on the objective functions and simulation results.

The workflow starts by analyzing the system specifications and the operational
environment in the requirement and verification management tool. Relevant pa-
rameters in the operational design domain are selected, and appropriate objective
functions are defined to evaluate the criticality of a scenario, e.g., TTC. With the
selected parameters and their value range and distribution, an initial suite of test
scenarios can be generated based on a given sampling strategy and the intended
size of the test suite. Next, scenarios in the initial test suite are executed in the
simulation platform and the optimization tool generates new scenarios based on
the completed simulation and the objective functions defined. In the end, the sce-
narios beyond the criticality thresholds are considered critical and can be used to
substantiate test cases for testing autonomous driving systems.

The contribution of this paper is the implementation of a workbench that pro-
vides a systematic approach for critical test scenario identification for autonomous
driving systems. The workbench identifies the most critical scenarios in simulation
and supports the testing in an efficient way. Particularly, the workbench provides
a complete tool chain and is generic for testing different autonomous driving sys-
tems. In addition, this paper also addresses the second goal of the thesis — to design
a solution to tackle the existing gaps of testing autonomous driving systems.
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5.3 Paper lll: Critical Scenario Identification for Realistic
Testing of Autonomous Driving Systems

In this paper, we applied the workbench for critical scenario identification for test-
ing two real autonomous driving systems from Volvo Cars, namely an autonomous
driving function and an autonomous parking function. The two functions provided
were still in the early version of their development.

The autonomous driving function mainly provides driving in lane and speed
adaptation according to the maneuver of the surrounding vehicles. Relevant pa-
rameters were selected, such as the number of vehicles in a scenario, and the initial
position, velocity, and acceleration of vehicles involved. Two objective functions —
TTC and jerk (i.e., acceleration rate) were used to measure the scenario’s criticality
in terms of collision probability.

The autonomous parking function scans the empty parking slot using the ul-
trasonic sensors installed. The host vehicle (a.k.a., ego-vehicle) is then parked
into the slot by controlling the steering wheel, throttle, proposition, brake pedal,
etc. The two parameters selected for this function are the parking slot length and
yaw angle of the stationary vehicles near the target slot. According to the ISO-
16787 standard, a minimum of 30 cm’s distance to stationary vehicles and a yaw
angle within 3 degrees to the central line of the parking slot defines the required
capability of autonomous parking functions.

We created the optimization models for these two functions in the modeFron-
tier optimization tool using an optimization algorithm pilOPT, and have effectively
identified critical test scenarios for both functions mentioned. In addition, we repli-
cated the optimization models using another algorithm MOSA to compare the two
different optimization algorithms. While no significant differences are consistently
observed, pilOPT performed slightly better than MOSA in both cases.

The contribution of this paper is validation of the approach we proposed in
Paper 11 for critical test scenario generation and the application of this approach for
testing real autonomous driving systems. The results indicate that our approach is
feasible and effective in identifying critical test scenarios. We also observed some
future improvements to extend this approach, one is to use realistic distribution of
parameter when generating critical scenarios, which is presented in the following
section.

5.4 Paper IV: A Vehicle—pedestrian Time-To-Collision
Model for Testing of Autonomous Driving Systems

Realistic distribution of parameters is required in scenario-based testing of au-
tonomous vehicles, since the distribution of parameters decides the exposure of a
scenario in reality. A different distribution of a parameter can change the proba-
bility of a scenario, thus would affect the potential criticality of it. Yet, realistic
distribution of parameters, e.g., TTC distribution of vehicle—pedestrian interac-
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tions in road traffic, are not provided in many cases. We established a model of the
TTC distribution for vehicle—pedestrian interactions using the Poisson distribution
and demonstrated its potential use for testing autonomous driving systems.

The model takes the mean arrival rate of vehicles and pedestrians as input and
predicts the worst-case distribution of TTC based on the Poisson distribution of
vehicles and pedestrians. By worst-case, we mean careless drivers and pedestrians
that are not paying enough attention to the ongoing traffic due to fatigue, distrac-
tion, or drunk driving. A real-life example of such a situation is the fatal accident
from Uber’s autonomous vehicle, where the vehicle failed to detect the cyclist in
front and the cyclist crossed the road without carefully evaluating the risks of the
oncoming vehicle. We demonstrated the use of this model to test an autonomous
emergency braking function from Volvo Cars where TTC to the frontal objects is
one of the parameters for activating this function. The model provides the worst-
case TTC distribution in a given traffic and enforces realistic distribution of pa-
rameters for generating or sampling scenarios for testing purposes.

We validated the model with real driving data from Viscando AB, and the
model consistently dominated the real distribution of critical TTC (i.e., TTC < 3
seconds). The validation results indicated that the model could serve a worst-case
distribution in real road traffic. Given that pedestrians have become one of the most
vulnerable user groups on the road, the safety assessment of autonomous vehicles
has to pay proper attention to the vehicle—pedestrian interactions. Modeling the
realistic distribution of vehicles—pedestrian TTC can thus be a valuable input for
testing autonomous driving functions like emergency braking.

6 Limitations and Discussion

We started the thesis with a broad scope of testing of autonomous systems in gen-
eral and then focused on critical scenario identification for testing autonomous
driving systems in solution design. Different types of autonomous systems em-
ploy different techniques and components; they provide different functionalities
and operate in distinct operational environments and follow separate safety reg-
ulations. The proposed approach for critical test scenario identification has not
yet been applied to other applications within the autonomous domain. Neverthe-
less, given that the explosion of test scenarios is a common challenge for fully
autonomous systems, we believe the critical scenario identification approach is a
meritorious alternative to address the testing of such systems.

The critical test scenario identification approach we provide involves a simple
scenario representation, where initial values of the parameters are selected, and
a static driver behavior model is implicitly assumed. The driver behavior model
can be diverse and adaptive in real road traffic based on the traffic dynamics and
change of the weather, road geometry, etc. Without a realistic behavior model, the
optimization might generate scenarios that do not represent real-world situations,
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e.g., suicide scenarios with unavoidable collisions at the beginning of the scenar-
ios. Thus, our approach can be extended by incorporating realistic driver behavior
models. Nonetheless, the thesis has demonstrated the feasibility of the approach
and provides a basis for future extension of it.

One may also argue that different optimization algorithms can differ in their
effectiveness and efficiency for finding the parameter sets of the most critical sce-
narios. Even though it is not a goal in this thesis to find the best optimization
algorithms, different algorithms can be compared and evaluated for best fit in crit-
ical scenario identification for different autonomous driving systems. In addition,
a clear gap for most existing studies is that no evaluation of the generated criti-
cal scenarios is provided. In other words, the proposed approaches have not been
integrated into the actual testing process of the autonomous driving systems, thus
no evidence is provided on how effective they are. Even though numerous critical
scenarios were identified for the given systems using the approach we designed in
this thesis, we need to better understand how the critical scenarios are used in prac-
tice and how the approach supports the quality assurance and safety assessment of
autonomous vehicles. However, this is not an easy task and calls for deep collabo-
ration with industrial players as well as getting into their engineering environment
and processes of development of autonomous driving systems.

7 Future Work

The goals of the thesis are to explore the field testing of autonomous systems, de-
sign the solutions to address the current gaps, and validate its feasibility in real
industrial context. We followed the design science paradigm and conducted the
work in a series of incremental steps. The main outcomes are a comprehensive
overview of software testing of autonomous systems and a systematic approach
of critical scenario generation for testing of autonomous driving systems. As de-
scribed in the previous section about the general limitations of the thesis and the
approach thereof, future work can be derived from multiple perspectives.

Several research items can be defined for continuation on the second goal of
the thesis — solution design — and improving the realism of the generated test sce-
narios. One is to extend the scenario representation to include more realistic driver
behaviors to foster realistic interactions between vehicles in a complete driving
scenario. A possible way to tackle that is to derive driver behavior models based
on real driving data collected, and include such models for vehicles when execut-
ing the scenarios in simulation. By doing so, we could evaluate how realistic driver
behavior models can affect or improve the generation of critical test scenarios.

Second, comparing different algorithms and identify which best fits a particu-
lar autonomous driving system for critical scenario generation. This is not a goal
in the current thesis as already mentioned earlier, but a good input to our approach
when selecting optimization algorithms. Particularly, a certain algorithm may out-
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perform the others in efficiency and effectiveness to optimize generation of critical
scenarios for a specific autonomous driving system. Thus, a comparative study
to evaluate different algorithms would help us to observe the differences between
them and identify the appropriate algorithm to use.

Thirdly, the critical scenario identification may be complemented by other ap-
proaches, such as the coverage-based approach, so the testing covers not only the
critical test scenarios, but also the general types of scenarios. Efficient testing of
different types of scenarios is a systematic way of verifying the safety and relia-
bility of autonomous driving systems in various situations. One possible direction
is to explore the effect of combining different testing approaches to maximize the
scenario coverage for the safety assessment of autonomous driving systems.

Lastly, one more research item that is significant to address, is the third goal of
the thesis — solution validation, which addresses the effectiveness of the approach
in practice and the generated critical scenarios for testing purposes. We aim to
integrate the critical scenario identification approach into the actual testing process
of autonomous driving systems and see how the approach can support the quality
assurance for such systems in actual engineering practice.
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Abstract

Testing of autonomous systems is extremely important as many of them are both
safety-critical and security-critical. The architecture and mechanism of such sys-
tems are fundamentally different from traditional control software, which appears
to operate in more structured environments and are explicitly instructed according
to the system design and implementation. To gain a better understanding of au-
tonomous systems practice and facilitate research on testing of such systems, we
conducted an exploratory study by synthesizing academic literature with a focus
group discussion and interviews with industry practitioners. Based on thematic
analysis of the data, we provide a conceptualization of autonomous systems, clas-
sifications of challenges and current practices as well as of available techniques
and approaches for testing of autonomous systems. Our findings also indicate that
more research efforts are required for testing of autonomous systems to improve
both the quality and safety aspects of such systems.
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1 Introduction

Autonomous systems are expected to replace humans in carrying out a variety
of functions [43], and can be central and crucial for different industry domains
such as automotive, robotics, and aviation. Advances in machine learning and
artificial intelligence have enabled an overwhelming progress for such systems.
There are already prototypes of autonomous vehicles that are tested on the road,
and autonomous systems have replaced humans to a significant extent for decision-
making in investment markets, particularly for asset management [96].

While autonomous systems are becoming prevalent and have enormous po-
tential for the society, how to test these systems is not resolved yet due to the
unpredicted environment they operate in, and their adaptive behaviour [45]. One
problem is that no industrial standards or common approaches have been settled
for testing of such systems [5, 61]. Further, research conducted on autonomous
systems tend to be conducted in isolation from industry practice, for example,
purely in simulation environments [23].

To better understand the essence of autonomous systems and the current sta-
tus of testing of such systems, we conducted an exploratory study by synthesizing
academic literature, focus group discussions and interviews with industry prac-
titioners. Our contribution is a synthesis of autonomous systems concepts, their
characteristics and functionalities, empirically grounded in research and practice.
We also classify challenges, approaches, techniques, and practices available for
testing of autonomous systems. The results indicate that the current state of testing
such systems is far from being desirable and it is in need of major improvements.
Our synthesis aims at providing tools for industry and academia to align commu-
nication on the topic, and to jointly meet the need for more knowledge.

While similar studies have been conducted in related areas they are either not
focusing specifically on autonomous systems, nor on their testing. Most of the
existing studies we found were either focusing on only one autonomous domain,
for example, self-driving cars [61], or a particular aspect of the system, like safety
[17]. Our results are comprehensive with respect to the testing of autonomous
systems in general, and are inclusive towards both academic research findings and
industrial practices. We believe they can serve as a good framework both for future
research and industrial development.

2 Related Work

Helle et al. present an overview of autonomous systems and testing approaches for
such systems, mostly from an avionic perspective [45]. In their paper, the authors
introduced the concepts and characteristics of autonomous systems as well as the
challenges for testing them. They conclude that, due to the dynamically changing
environment and system behaviour, conventional testing approaches that aim for
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fault avoidance, removal, and tolerance are infeasible to ensure the quality of au-
tonomous systems. In addition, they surveyed existing approaches and presented
mainly model-based testing approaches and related tools. We extend their insights
by including also industry practices and by exploring numerous techniques, ap-
proaches, and engineering practices for testing of such systems beyond the model-
based approaches.

Knauss et al. conducted an empirical study aiming to collect testing challenges
for autonomous vehicles [61]. Similar to our study, they combined a literature re-
view with focus groups, and interviews with both researchers and practitioners.
Our study is broader, focusing on autonomous systems in general and have an
explicit goal to extract existing techniques and approaches in addition to the chal-
lenges.

Borg et al. [17] present challenges and approaches for testing of deep learning
based automotive applications. Their results point to safety cages as a promis-
ing solution to be investigated further. The study contains a systematic literature
review of 64 papers on safety analysis or verification and validation of machine
learning based autonomous cyber-physical systems. Six workshops were con-
ducted with practitioners from the automotive domain, in order to bridge the gap
in understanding the state-of-the-art and obstacles on the way forward.

Zhang et al. report a systematic literature review on testing and verification
of neural-network-based safety-critical cyber-physical systems [112]. Their study
includes 83 papers from 2011 to 2019. The authors present an overview of differ-
ent neural networks and a summary of existing approaches for verification of such
systems as well as their pros and cons. Another similar study was conducted by
Zhang et al. [111] with focus on testing of machine learning systems. In this study,
the authors surveyed 144 papers between 2014 and 2019 on testing and verifica-
tion of machine learning systems, and provided an overview and classifications
of techniques and approaches that are employed in research. As a comparison,
our study focuses on autonomous systems, independently if they are driven by
machine learning technologies or not.

3 Research Methods

We launched a multi-method study, consisting of a semi-systematic literature re-
view, a focus group discussion, and four interviews, as shown in Figure 1, con-
ducted in the given order. We analyzed the collected data qualitatively and estab-
lished one thematic model per activity [90]. Then the outcomes from all the three
activities were compared and aggregated into a coherent outcome by the end. Our
study is guided by three research questions, aimed to build on and complement
related work, as defined in Section 2:

RQ1 How is the concept of autonomous systems defined?
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Figure 1: Overview of Research Methods

RQ2 Which are the principal challenges related to testing of autonomous sys-
tems?

RQ3 What approaches and practices for testing of autonomous systems are used
or proposed?

3.1 Literature Review
Paper Selection

We conducted a semi-systematic literature review [97], where the research ques-
tions are broad and the searching and selection process is flexible. Due to the
relative immaturity of the research field, the purpose was to retrieve an overview
rather than to aggregate specific evidence. Thus peer-reviewed research papers as
well as book chapters, were included and referred to as “papers” below.

We used IEEE Xplore, ACM, Scopus, Wiley, and Web of Science as the index-
ing services for finding the literature. Our search criteria “testing of autonomous
systems” was applied to titles, abstracts and keywords. Titles and abstracts were
examined for inclusion/exclusion based on relevance. We also used backward
snowballing to track more relevant papers. In total, we identified 45 papers as
listed in the complementary material [3] in which the majority of them were ac-
quired through the initial search results.
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Table 1: Overview of participants in the focus group

# Position Domain Experience
1 Manager Health Care 25-30 years
2 Test Specialist Software Engineering 20-25 years
3 Researcher & Engineer Software Engineering 10-15 years
4 Researcher & Engineer Logistics 0-5 years

5 PhD Cand. & Engineer Software Engineering 0-5 years

6 Professor Artificial Intelligence 20-25 years
7 Senior Researcher Software Engineering 5-10 years
8 PhD Candidate Robotics 0-5 years

Analysis and Collation

The first author saved all selected papers into Zotero, and studied the full-texts.
For each of the papers, important segments discussing the features under study
were highlighted, then short labels and, detailed notes if necessary, were created
in Zotero. The labels were then refined and sorted to be coherent, consistent, and
distinctive codes as unclear and duplicate entries were removed. Lastly, they were
imported in XMind for thematic synthesis based on the guidelines by Cruzes et
al. [27]. A thematic model was created with 84 codes that organized around the
three research questions and reviewed by the second and the third authors. Details
of the thematic model can be found in the complementary material [3].

3.2 Focus Group
Participants Selection

We arranged a focus group [28] discussion in April 2020 to get insights from
industry practitioners. Participants were selected using convenient sampling [38]
based on an invitation towards a network of testers in Southern Sweden. In total,
8 participants joined the focus group, as summarized in Table 1.

Implementation

Due to the pandemic, the focus group was conducted via Zoom. We started with a
general introduction about this study and testing of autonomous systems; then the
three research questions were discussed, each devoted about 30 minutes. For each
question, first, participants discussed the question in breakout rooms with 2-3 per-
sons each and wrote answers on Padlet; second, all participants were brought back
to the main session and the moderator led a discussion to elaborate and expand the
answers on Padlet. The focus group was video recorded with consensus from all
participants and the Padlet notes were saved by the end.
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Result Analysis and Synthesis

We adopted the inductive thematic synthesis approach proposed by Cruzes et al.
[27] for coding. The first author conducted the primary coding. First, the recorded
videos were reviewed, and notes were taken; Padlet answers were then combined
to generate the codes. Second, the codes were imported and anlyzed in XMind for
thematic synthesis. A thematic model was created with 37 codes that organized
around the three research questions. The resulting model was reviewed by the
second and the third authors, and can be found in the complementary material [3].

3.3 Interviews
Participants Selection

To validate and complement the findings from the previous activities, we con-
ducted four interviews with industry practitioners that were not involved in the
focus group. Now, we specifically approached experts in our network who had
worked with autonomous systems. Five interviewees from industry accepted the
invitation as shown in Table 2, where #3 and #4 were interviewed together.

Implementation

The interviews were conducted on Zoom by two of the authors each. Two of the
interviews were 60 minutes in length and the other two lasted for 45 minutes. The
interview schema was semi-structured, guided by Runeson et al. [90], and Rowley
et al. [87]. The interview questions, as listed in the complementary material [3],
were derived from the literature review and focus group discussion. The interviews
were video recorded with consent from the interviewees.

Result Analysis and Synthesis

We used the same synthesis approach [27] as above. Recorded videos were first
transcribed in Nvivo, and important segments of the text were highlighted and
coded, resulting in 62 codes. They were imported in XMind for thematic synthesis,
where, duplicate and unclear entries were removed, and a thematic model with the
codes was created and organized around the three research questions. Lastly, the
resulting model was reviewed by the second and third authors, and details of the
model can be found in the complementary material [3].

3.4 Final Thematic Model Synthesis

The thematic models generated from the three activities were reviewed, refined,
and further compared to eliminate any potential conflicts across these models in
XMind. Then they were synthesized into a final thematic model. First, the dis-
tinctive themes and codes from the three models were identified and moved to the
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Table 2: Overview of participants of interviews

# Position Domain Experience
1 Industrial PhD Candidate Automotive 5-10 years
2 Solution Architect Automotive 5-10 years
3 Lead Software Architect Mobility 20-25 years
4 Software Architect Mobility 20-25 years
5 Technical Manager Manufacturing 20-25 years

final model, then the rest of the themes and codes, which share the same or similar
purpose, were analysed further to either be added to the final model or merged
with other codes. Second, the final thematic model was reviewed to ensure that
it integrates the themes and the codes from all three models, and resulting codes
remain being coherent, consistent and distinctive.

3.5 Validity

As reported above, we have used systematic research methods to improve the va-
lidity of the synthesized conceptual model. Being an exploratory study, aiming
to understand concepts and practices, we value construct validity highest. To
strengthen the construct validity, we have asked open questions, not relying on
predefined terms and concepts. The reliability or trustworthiness of the study is
addressed through rigorous data collection and analysis procedures. The analysis
of the data took place in three steps, each focusing on one source of empirical
evidence (literature, focus group, and interviews) to ensure that the concepts may
emerge from the empirical source, which thereafter were unified into one concep-
tual model. The external validity is related to the scope of the model. We have
extended the scope beyond the most prevalent automotive domain, by searching
the literature broadly, interviewing people from other domains, and explicitly ask-
ing for autonomy concepts in virtual only domains, like stock markets. However,
we don’t make any claims with respect to completeness of industry domains.

4 Results

The resulting conceptual model presents three different contributions of our study:
1) A conceptualization of autonomous systems, 2) A classification of challenges
for testing of autonomous systems, and 3) A classification of available techniques
and approaches as well as current practices for testing of autonomous systems. The
following sub-sections explain the findings in a more detailed manner, including
excerpts from our analysis model in Figures 2-5.
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Figure 2: Concepts of autonomous systems

4.1 Conceptualization of Autonomous Systems

As there is no universal definition of what constitutes an autonomous system, we
synthesized the variety of notions used in literature and practice for different ap-
plication domains. The result was a taxonomy of aspects defining an autonomous
system, as presented in Figure 2. Both the literature and industry practitioners sim-
ilarly described that, autonomous systems are capable of performing certain tasks
in an unstructured environment without human supervision [45]. More specifi-
cally, the system must be self-aware, meaning that it can analyse the situation and
do the decision-making on its own, given the environmental conditions and its own
states. Furthermore, the system must be able to actuate the plans to fulfil the de-
sired tasks, and adapt its behaviour to optimize the goals by learning from the
past.

A recent study by Sifakis [95] confirms our conceptualization by formaliz-
ing an architecture of autonomous systems, in which, the architecture defines five
compulsory modules of an autonomous system: perception, reflection, planning,
goal management, and self-adaptation.

The mechanism of adaptation (rule-based or self-evolving) and appearance
(physical or virtual) of the autonomous systems are two characteristics discussed.
While autonomous systems are expected to adapt their behaviour subject to con-
flicting goals and dynamically changing environments [45,95], some interviewees
emphasized the self-evolving capability, without being explicitly implemented, as
an essential nature of these systems. However, the others insisted on that rule-
based systems can still hold some level of autonomy, in which, they are able to
handle certain situations by themselves in a more limited way. As said by the
interviewees #3 and #4: We believe the rule-based systems can still be seen as au-
tonomous systems as long as they offer the intelligence and autonomy in handling
the tasks. The dispute on mechanism of adaptation becomes essentially a matter of
the level of autonomy, as described in the automotive domain by the SAE 6-level
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of autonomous driving [17].

As for the appearance of the systems, the most intuitive cognition of autonomous
systems involves the physical components such as sensors and electronics, as what
has been integrated in vehicles and robotics. However, they can also appear in
the digital form, e.g. smart software applications in the investment market [96],
where they offer some intelligence, and react autonomously and virtually over
non-physical media. This is a common view from the interviews and focus group
discussion, as interviewee #2 stressed: A pure software system can also be instance
of autonomous systems, since it is still the software control units, which lie in the
heart of the autonomous systems, that actually enable the system autonomy.

Given the broad interpretation of autonomous systems in different industry
contexts, ranging from automotive, robotics, aviation, healthcare, cyber-security,
to smart software systems, a definition of autonomous system should incorporate
systems both in a physical and digital form. Besides, the definition should also
be inclusive for different mechanisms of adaptation. A rule-based system can
still generate some level of autonomy and handle unforeseen situations without
human involvement, and self-evolution can be viewed as a feature that enables
full autonomy where the system has the intelligence to reason, analyse and learn
from both the surroundings and experiences, without being explicitly programmed
during design.

4.2 Challenges for Testing

The challenges for testing of autonomous systems, as defined by our conceptual-
ization model, come from two primary concerns, namely quality and safety. The
quality aspects are committed to assuring the correctness of the design, the code,
and the behaviour, while the safety aspects are about ensuring that potential in-
cidents are within an acceptable threshold. Sifikas et al. [96] articulated that the
machines must cope with the human order and should not expose any risk or dan-
ger to human society. Also, according to Helle et al. [45]: Humans usually have
high expectations for autonomous systems but low tolerance on their faults.

Unfortunately, our results indicate that the challenges on quality and safety of
autonomous systems are far from being resolved due to the unpredictable environ-
ment, the complexity, data accessibility, and no standards or guidelines that are
settled for testing, see Figure 3.

Unpredictable Environment

The unpredictable environment is one of the major impediments that add uncer-
tainties to testing as the systems can run into any environmental conditions that
were unknown during design. Further, the same input can lead to different results
since the system will learn and adapt its behaviour after deployment [45]. For
example, a satellite has to respond to all risks in space for years and human inter-
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Figure 3: Challenges for testing of autonomous systems

vention is impractical after launch. This leaves a large explosion of parameters to
be explored and it is infeasible to cover all possible scenarios [45,62]. As reported
in research on autonomous cars [62,69, 103] and also argued by the interviewees,
a number of million kilometers’ driving test for the vehicle would guarantee the
safety based on statistic prediction and the level of ambition. However, in reality,
it is too expensive to conduct that distance of driving test in the traffic within years
and there might still be corner cases, low-frequency errors, that are not covered.

System and Scenario Complexity

The complexity of testing autonomous systems lies in all artifacts involved in the
operational environment and the system itself. The system is typically built as
a system of systems, which involves many software control units and hardware
electronic components. The emergence of Al technologies has increased the sys-
tem complexity due to the limitations of existing techniques in addressing their
test-ability, interpret-ability, and visualize-ability [17].

The performance of these Al-enabled systems depends largely on the data,
where the implementation provides only the pre-trained model and leaving the ac-
tual behaviour non-deterministic and subject to data acquired during operation.
Therefore, conventional testing approaches such as unit testing, component test-
ing, and code review are inadequate to ensure the quality and prevent, identify or
remove undesired consequences [8, 17,78]. The testing has to ensure not only the
correctness of the code and algorithms, but also the behaviour of the system that
is determined by the actual input. This requires a large quantity of data, that are
reliable and based on a real-world distribution, and a thorough understanding of
how the systems are evolving.

The black-box nature of deep learning algorithms makes it even harder to un-
derstand or visualize the process of the decision-making [17, 112] as it can go
through hundreds of layers before reaching a certain decision, and millions of pa-
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rameters can be involved in this process. Besides, the Al components are exposed
to adversarial attacks that can mislead the data and the communications in be-
tween [61]. A recent example is that a man with 99 mobile phones on a kid’s cart
flawed Google Maps as a traffic congestion [106].

Scenario complexity is yet another challenge at the core of the testing of au-
tonomous systems [5]. It is hard to track, record, and replicate failures, particularly
for fatal crashes or near-crashing cases [78]. It is unclear how engineers can define
a scenario that includes all artifacts, either in a real environment or a simulation
environment [61,79]. Thus a better understanding is needed, of which factors, or
objects, in the testing scenario led to the existing consequence, and whether the
scenarios used for testing reflect the actual situations on how human operators re-
act. In addition, established terminology and tools are imminently demanded [5].

As a result, the testing, which to a great extent is relying on the modelling
of the system, the environment, and the scenarios, is getting intricate due to the
complexity of all of them. It leaves academia and industry to improve and invent
tools and approaches on how to model the environment, the system, and scenarios
to keep the simulation environment align with the real-world [61, 78].

Data Accessibility

To be able to analyse, model, and test the systems, more data of good qual-
ity are required. However, the data becomes extremely costly when it comes
to the collection, labelling, interpretation, validation, and generation of testing
data [9, 61,62, 104]. The developers and testers must not only collect the data,
but also understand the significance, dimensions, and distribution of the data in
different formats, label and validate the data to not under-fit or over-fit the per-
formance. On some occasions, the data engineers must generate reliable data to
compensate lack of data for testing purposes. In addition, one of our interviewees
also expressed that they were struggling with data ownership issues to acquire data
access between organizations.

Missing Standards and Guidelines

One problem that aggravates the complexity for testing of autonomous systems is
that no standards and guidelines are settled [45, 62, 78]. Thus a new foundation
must be established for autonomous systems [43] to understand, e.g. how to spec-
ify the requirements with suitable terminology, what quality criteria and safety
performance to adopt, what oracle to pass or fail the test cases, how to conduct
the regression test if revisions are made during tests, and what policies, regula-
tions and ethical standards to apply. New tools and approaches must be invented
to guide and automate the testing in an efficient and effective way. Quotes from
two interviewees state that #2: The industry is not prepared yet to address these
issues into standards and set guidelines on how to do it. #5: More education and
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research are required to get the industry ready to mitigate the challenges and for
the society to get along with the autonomous technologies and products.

4.3 Techniques, Approaches and Practices

Existing techniques, approaches, and practices for testing autonomous systems
are insufficient to address the testing in an efficient and effective way, whereas
they still address some important testing perspectives. Most of our findings, as
described in the following sub-sections, are extracted from the literature study
since the industrial practitioners usually focused on one or two of the approaches.

Practices — Available Industry Standards

Some industry standards are mentioned by the literature and industry practitioners
from the focus group as well as the interviews, even though none of them specifies
what is required for testing the fully autonomous systems. Among them, ISO-
26262 addresses the functional safety for road vehicles [62, 108], which impacts
on how automotive software is designed, developed, and tested. However, as more
autonomous functionalities are involved and enabled by Al technologies, such as
deep learning neural networks, the techniques within this standard such as code
review and coverage-based testing are no longer applicable [17]. The ISO-16787
specifies test procedures and performance requirements for assisted parking sys-
tems [71]. It serves more as a suggestion and is up to each nation to implement.
IEC-61508 introduces the fundamentals of functional safety for the electrical/elec-
tronic/programmable safety-related systems and focuses on the hazards caused by
malfunctioning rather than any external environmental related factors [17,112]. A
newly published standard, which aims for the safety of the intended functionalities
(SOTIF) for automotive, is described in ISO/PAS-21448 [17,112]. This standard
provides guidance and measures needed for the applicable design, verification, and
validation to achieve the SOTIF.

Practices — Engineering Recommendations

Several engineering recommendations, as shown in Figure 4, were articulated both
in the literature and by the industry practitioners, such as, using simulation for
testing of autonomous systems to reduce the cost of accessing expensive hardware
facilities and the risk of generating safety issues and economic losses. At the same
time, simulation can considerably improve the testing efficiency by monitoring
the test, recording the data, and generating the failure or test report. Besides,
simulation also benefits test analysis by visualizing the process of the test.

The V-model paradigm is a common practice for test decomposition [47, 62].
In V-model engineering, software testing on different levels require different tech-
niques and approaches, starting with unit testing, component testing, and integra-
tion testing, and then moving the entire system with both software and hardware
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parts into a simulation environment, to test ground and into the real-world to en-
sure that both the functional and non-functional requirements are satisfied.

Our interviewees and focus group participants also emphasized that knowledge
transfer is essential. By learning from other industry domains and collaborating
with both academia and industry, the entire industry should set up standards and
regulations jointly, open source the data and platforms for reusing instead of hav-
ing every player creating its own. As said by the interview #2: We must learn from
the other industry domains and transfer knowledge across. We must also initiate
the collaboration among the industry for reusing the data and the tools instead of
creating your own.

Kang et al. presented 37 datasets and 22 virtual testing environments that are
publicly available for closed-loop testing for autonomous vehicles [56]. Academic
researchers can well contribute to explore possible alternatives, with the indus-
try providing the test data, test-beds, and test results. Thus, industry and academia
should move forward hand in hand. One of the most important and practical strate-
gies for testing of autonomous systems is to go from requirement-driven engineer-
ing, to aim for iterative and continuous engineering, where it may initially start
with limited testing data and an incomplete testing model, as expressed by in-
terviewee #2: We do not expect the testing can be solved with everything known
beforehand, but rather taking it continuously in step-wise. The point is, when we
start testing, we will get the data and we know better what is the problem.

Techniques and Approaches (Conventional)

Conventional testing approaches are deemed as inadequate for addressing the au-
tonomous nature of the systems [45], but they still dominate the testing efforts and
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resources for the time being. Regardless of the complexity of the system archi-
tecture, the software is still enabling the system intelligence and autonomy. The
conventional software testing process, in brief words, can start with approaches
such as unit testing, component testing, integration testing and non-functional test-
ing. Depending on the testing and integration plans, the other components and
sub-systems are then included and tested in simulation with Software-in-the-loop,
Hardware-in-the-loop, and Vehicle-in-the-loop for the automotive [47]. In the later
stage of testing, it involves ground testing or test in production environment, such
as, test track and real road testing for vehicles and mobile robots before deploy-
ment [5,47].

Techniques and Approaches (Autonomy-focused)

There are testing techniques and approaches used for solving autonomy-derived
issues, as proposed by existing academic research and industrial practices, and
shown in Figure 5. Model-based testing approaches [7,45] are used to model the
system properties, constraints, and behaviour, and thus can be further utilized for
automatic generation and execution of the test cases. Formal methods [7,17,47] is
another similar way to analyse and represent the system design, inputs and outputs
using domain terminologies, and validate the system against a formal specification.
These techniques and approaches are commonly used for rule-based systems.
Several other techniques are developed with promising results in reducing the
number of test cases and total test efforts. Among these, combinatorial test-
ing [103, 108] combines and adjusts multiple parameters in one test scenario in-
stead of having one parameter being updated with the rest remaining unchanged;
search-based testing [37] and scenario-based testing [82] are used to explore and
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identify critical scenarios through statistical learning, e.g. using probabilistic mod-
els or genetic searching algorithms, where it analyses the previous testing results,
studies the differences of them and approaches to the criticality objectives. Also,
as highlighted by our interviewees #2, that We think scenario-based testing is a
very promising approach for testing of autonomous vehicles. Since it will be too
expensive and impractical for us to cover all possible test cases, we should iden-
tify different scenarios instead, especially the worst-case scenarios, and put most
of our test efforts in.

Fuzzy testing [111] and fault injection [48, 62] are approaches that have been
utilized to improve the test coverage and identify the corner cases, particularly
for machine learning based applications. In detail, fuzzy-testing requires a large
quantity of randomly selected data and validates the system performance based on
the distribution and coverage of the test input. Fault injection is another variant
where a set of special and faulty values are prepared to stimulate the systems and
finding the corner cases. Another approach like DeepTest [104] was developed,
where the researchers used image transformation to represent different real-world
driving conditions and activate more neurons in the neural network as an indication
for testing the autonomous driving algorithms.

Runtime verification include strategies, such as run time monitoring [68] and
actuator-monitor architecture [8], which refers to that the system constantly moni-
tors the behaviours during operation and report any anomalous situation as well as
collecting data for reusing and optimization purposes. In addition, safety cage [17]
is another approach that signals the anomalous inputs during operation by setting a
confidence threshold and involving another control algorithm for situations below
the threshold.

In order to address the test oracle issue, metamorphic testing [65, 108] was
applied to define the metamorphic relations instead of specifying a certain value
for asserting the test output. It is effective for many complex systems where the
output of the test scenarios are hard to quantify but are consistent according to the
inputs and certain principals, the metamorphic relations then act as the test oracle
and expose a fault if the result fails to comply with them.

5 Discussion

With the advent of autonomous systems, testing of such systems has become a
challenge to practice as classical test approaches are not sufficient. Also the con-
cept of autonomous systems raises questions — what do we mean by autonomy, and
what kinds of systems may be labeled autonomous? Further, as this is an emerging
field, with research and development spent in both industry and academia, it is of
certain importance that the concepts are aligned to allow joint efforts and reduce
the gap between industry and academia.
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We therefore studied both academic literature and industry practice; the lit-
erature through a classical literature review, and industry practice through focus
group discussions and interviews with practitioners. By synthesising a thematic
model of the findings from different sources, we have presented an inclusive con-
ceptualization of autonomous systems (RQ1). We found a reasonable agreement
on the autonomy concept to include aspects of performing tasks in unstructured
environments without human supervision. However, whether or not the autonomy
includes self-evolution is not agreed upon. Further, while a lot of research and
broader discussions on autonomous systems relate to physical systems, like robots
and cars, both literature and practice confirm that autonomous systems may be
non-physical as well, for example, in banking and trade.

As a consequence, we propose that research be conducted on autonomous sys-
tems across domains, with physical as well as non-physical systems. Thereby gen-
eral properties and techniques for autonomous systems may be developed rather
than techniques for specific domains.

Given the characteristics of autonomous systems, we identified several chal-
lenges for testing (RQ?2). First and foremost, autonomous systems are expected to
be able to meet unpredictable situations and contexts, which by definition makes it
impossible to test for a subset of such situations. Even when trying to specify ex-
ample scenarios, they become very complex or are not resembling reality. Access
to data is a key challenge, both to train and test autonomous systems, and since
the field is emerging, standards and guidelines for testing are not yet established.

Implications for research and practice are that brute force traditional testing
will never scale for autonomous systems. Rather, new approaches to modeling
and simulation are needed, which align well with operational environments. Fur-
ther, access to realistic data is a key for both training and testing. Most probably,
domains have to collaborate on deriving and curating data.

Even though the foundation for testing of autonomous systems seems weak,
there are techniques and approaches used both in research and practice (RQ3).
However, the academic contributions are mostly adaptations of approaches for
conventional systems, and fewer novel approaches. Testing of autonomous sys-
tems do require novel approaches, but these may be well designed adaptations and
combinations of elements already used for conventional systems.

We do not claim that all kinds of autonomous systems will encounter the same
challenges, nor that we have covered all kinds of systems. Nevertheless, we have
explored the field of testing of autonomous systems and provided many insights
based on both the academic publications and industry practices. Our results clearly
indicate that the testing of autonomous systems is encountering a variety of chal-
lenges and must be improved aggressively.

In the near future, we would like to extend the insights from more autonomous
contexts, other than automotive, robotics, and manufacturing. We would also like
to experiment with and compare the pros and cons of different techniques in real
industrial contexts. As articulated by Harel et al. [43], a foundation for the next-



6 Conclusion 33

generation autonomous system must be established, and according to Sifakis [96]:
No power of decision to autonomous systems should ever be granted without rig-
orous and strictly grounded guarantees under the pressure of economic interests
and on the grounds of ill-understood performance benefit.

6 Conclusion

We have conducted an exploratory study on concepts related to testing of au-
tonomous systems, through a semi-systematic literature review, a focus group and
interviews with industry practitioners. We contribute to synthesizing 1) Concepts
of autonomous systems, 2) Challenges for testing of autonomous systems, and 3)
Techniques and approaches as well as practices for testing of autonomous systems.
The findings are based on insights from both a literature review and industry prac-
tices, and can serve as a frame to facilitate, both academia and industry, on testing
of autonomous systems.

The conceptualization defines autonomous systems to be capable of perform-
ing specific tasks in an unstructured environment without human supervision. Our
study also suggests that limited techniques and approaches have been reported
so far by the academia and industry, and testing of autonomous systems must be
substantially improved. The industry is trying different approaches without hav-
ing common guidelines and standards, which is difficult and to advance the field,
industry and academia must join forces in collaboration.
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Abstract

Testing of autonomous vehicles involves enormous challenges for the automo-
tive industry. The number of real-world driving scenarios is extremely large, and
choosing effective test scenarios is essential, as well as combining simulated and
real world testing. We present an industrial workbench of tools and workflows to
generate efficient and effective test scenarios for active safety and autonomous
driving functions. The workbench is based on existing engineering tools, and
helps smoothly integrate simulated testing, with real vehicle parameters and soft-
ware. We aim to validate the workbench with real cases and further refine the input
model parameters and distributions.

1 Introduction

Testing of unsupervised autonomous driving (AD) features is a grand challenge
for the automotive industry, since the variation of scenarios to test is extremely
large and it might therefore be difficult to get sufficient scenario coverage within
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Figure 1: Overview the test scenario identification workbench, consisting of inter-
connected tools (left) which are used in the workflow (right)

available testing budget when relying on live testing only [85]. To utilize available
resources, virtual testing and simulations is a primary industry concern, according
to a recent survey [61]. However, simulation only is of limited assistance for auto
makers; they must smoothly bridge the virtual software model-in-the-loop to the
final testing with the real vehicle-in-the-loop. Industrial workbenches have been
presented [41, 98] but since they are not fully open nor standardized, there is a
need for further development of autonomous driving test benches.

We therefore designed a workbench for efficient test scenario identification for
autonomous driving software, integrated with the industrial development process
and products.

We have set up an industry—academia collaboration project between Volvo
Cars and Swedish universities to design a workbench consisting of three intercon-
nected tools, as shown in Figure 1 (left): a Requirement and Verification Manage-
ment Tool for embedded systems; SPAS, a proprietary simulation platform for Ac-
tive Safety (AS); and modeFrontier, a multidisciplinary design optimization plat-
form. Further, we define a workflow, see Figure 1 (right), first generating an initial
test database from the system specifications and standards, second optimizing the
model to identify the most critical scenarios.

2 Related Work

A number of simulation platforms are available for autonomous driving, either
open source or commercial. Despite that many of them are similar from a func-
tional perspective, one may differ from the others regarding the simulation engine,
scripting language used, or the capability to support specific sensor types, operat-
ing systems, and the X-in-the-loop integration [86]. CARLA, an open-source sim-
ulator, enables 3D visualized urban environments for autonomous driving, where
the road, weather, vehicle dynamics, pedestrians, and sensor suites can be mod-
eled [31]. Airsim, another open source simulator, that simulates both vehicles and
drones, enables both software-in-the-loop and hardware-in-the-loop for physically
and visually realistic simulations [94].
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To make the tools more integrated, main automotive manufacturers are devel-
oping their own products for validation, verification, testing and simulation [86].
For example, Opel developed their toolchain for simulation-based identification of
critical scenarios [41]. Analogously, Volvo Cars developed their SPAS platform,
to serve the development and testing of different AS/AD systems. The primary ad-
vantages of proprietary toolchains are, that they maintain full control of the design
and implementation of them, and can flexibly adapt as well as to deploy a new
iteration for any specific feature integration. Further, it enables tight integration
of their product software in their simulation environments. However, as develop-
ment of tools and test rigs are costly, cross-company initiatives exist, for example
presented by Solmaz and Holzinger [98].

3 Tools and Workflow

3.1 Requirement and Verification Management Tool

The Requirement and Verification Management Tool is a development platform
for embedded systems with a strong foundation in the automotive industry. The
tool is used for specifying and maintaining the requirements, architecture designs,
test solutions and other type of system specifications for vehicle features, as well
as the test results that measure the coverage and fulfilment of the requirements.

3.2 SPAS Platform

SPAS is a simulation platform for integration and testing, based on MATLAB/Si-
mulink and developed by Volvo Cars. The platform is used as the model-in-the-
loop testing platform for early verification of Active Safety (AS) and Autonomous
Driving (AD) functions at Volvo Cars.

There are two main parts in the SPAS environment, namely the SPAS basic
model and the AS/AD software. The SPAS basic model includes models of the
environment, driver, powertrain, transmission, driveline, chassis, brakes, steering,
electrical system, and vehicle system control modules. The AS/AD software is
the implementation of the driving function, which will eventually be deployed in
production vehicles.

3.3 modeFrontier

modeFrontier is a tool for process automation and optimization in the engineering
design process. It offers a graphical approach to build an optimization model with
a variety of built-in applications and external programs for MATLAB, Java and
Python etc. modeFrontier also provides visualization and statistical analysis tools
to visualize the optimization process and interpret the optimization results.
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3.4 Scenario Ildentification Workflow

The test scenario identification workflow has two main phases, Generate initial
test database, and Find critical scenarios with optimization. An overview of the
workflow is presented in Figure 1 (right).

The first task in the workflow is an initial system specification analysis in the
Requirement and Verification Management Tool, where the system requirements,
design and test artefacts are created and maintained. Next, relevant parameters
and objective functions for SPAS are selected based on systematic research of the
system specifications and industrial standards, like ISO-16787 [49]. Parameters
are quantifiable properties of the driving scenarios and are crucial for the perfor-
mance of the system functionalities. Objective functions are the measurements that
can be tracked or computed during the autonomous drive maneuver, to indicate the
performance of the system functionalities in regards to efficiency, accuracy and
safety etc. Last in the first phase, an initial test suite is generated in modeFrontier,
based on the selected parameters.

In the second phase of the workflow (lower right part of Figure 1), the mod-
eFrontier optimization model is created to automate the rest of the process in-
cluding, the SPAS simulation of the initial test scenarios, recording the simulation
results, and optimizing the objective functions using search algorithms in mode-
Frontier. The solutions evolve through optimization of the objective functions by
analyzing the existing results and exploring the parameter space. The last task in
the workbench is to identify critical scenarios from optimization results where a
criticality threshold is defined for the objective functions. Thus, any scenarios that
are beyond the threshold are considered critical.

In contrast to other scenario-based test benches for autonomous vehicles [41,
85], our workbench is generic, which means the driving function, simulation plat-
form, parameters and objective functions are exchangeable. Thus, the workbench
can, in principle, be used for critical scenario identification for any driving func-
tions, and is not subject to a particular technique or simulator that is intended.
In addition, our workbench automates the critical scenario identification process,
which does not require expert involvement to develop, or deploy the workbench
as well as to extract scenarios, and thus outperforms the others in simplicity and
efficiency. Our further work includes validating the workbench with real cases and
refining the input model parameters and distributions.
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Abstract

Autonomous driving has become an important research area for road traffic, whereas
testing of autonomous driving systems to ensure a safe and reliable operation re-
mains an open challenge. Substantial real-world testing or massive driving data
collection does not scale since the potential test scenarios in real-world traffic are
infinite, and covering large shares of them in the test is impractical. Thus, critical
ones have to be prioritized. In this study, we establish a systematic approach for
critical test scenario identification with integrated tools and a workflow to explore
the most critical test scenarios and facilitate testing of the autonomous driving
functions. We also demonstrate the effectiveness of our approach by using two
real autonomous driving systems from the industry by collaborating with Volvo
Cars. Our main contribution in this work is a feasible and complete tool-chain for
critical test scenario identification that is general for testing different autonomous
driving systems.
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1 Introduction

While autonomous driving is expected to improve traffic capacity and reduce road
accidents, testing of the autonomous driving systems is a prerequisite to ensure
the reliability and safety of such systems [99]. Inadequate or ineffective testing
could fail to discover potential defects and misbehavior in the system and lead
to severe accidents in the road traffic [36]. The fatal accident caused by Uber’s
autonomous vehicle is a typical example of such failure where a cyclist in front
was not detected and subsequently hit by the vehicle at an intersection in Arizona,
US, in 2018 [110].

Current approaches for testing autonomous driving systems that rely on sub-
stantial real-world testing, or collecting real driving data at scale, are considered
both inefficient and ineffective since they take an unpractical amount of time to
complete and may still not cover rare traffic situations [81]. The regular road traf-
fic, most of the time is considered non-critical [58]. Therefore, new approaches
for testing autonomous driving systems based on critical scenario identification are
increasingly demanded [35,36]. Critical scenarios are referred to as scenarios that
can lead to a collision or near-collision consequence or situation here and are of
interest for testing autonomous vehicles.

Nevertheless, existing studies mostly present parts of a complete solution for
critical test scenario identification, for example, focusing on either simulation or
optimization of driving scenarios [11,60]. Also, the reported studies are in many
cases function-specific, for example, by proposing interventions based on a partic-
ular function module, like motion-planning for the highway scenario [80]. There-
fore, the feasibility of such approaches for testing different autonomous driving
functions is unclear. In addition, previous studies tend not to validate their ap-
proaches on real driving functions from industry, but instead on some basic im-
plementations based on existing platforms like MATLAB Simulink [50], or using
publicly available driving components like DeepDriving [35,36]. The effective-
ness of those approaches for testing real autonomous driving systems under real
traffic conditions is not demonstrated.

To tackle the challenges mentioned above and facilitate testing of different
autonomous driving systems, we have proposed a critical test scenario identifica-
tion approach in our previous short paper [100]. We extend the approach in the
current work and generate critical test scenarios for two industrial autonomous
driving functions by partnering with the automaker Volvo Cars, including a park-
ing function in the low-speed maneuvering domain and a driving function in the
high-speed maneuvering domain. Our approach utilizes three existing engineering
tools (requirement and verification management tool, SPAS simulation platform,
and modeFrontier—process optimization and automation tool). It presents a sys-
tematic approach for identifying critical driving scenarios through co-simulation
with system implementations. The results of applying our approach on the two au-
tonomous driving functions have demonstrated the effectiveness of this approach
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for identifying the most critical scenarios for testing. Consequently, the identified
scenarios can be used to substantiate test cases for autonomous vehicles in both
simulated and real-world testing. To clarify our scope, the work does not aim to
find the best optimization algorithm but to present a systematic approach for crit-
ical test scenario identification and demonstrate the effectiveness of this approach
for testing real autonomous driving functions.

Our work provides a complete solution by integrating different components
into a feasible tool-chain as a whole for critical test scenario identification for au-
tonomous driving. It enables an end-to-end workflow from the initial analysis of
the system specifications until generating a set of critical scenarios that can be used
for testing. The approach is generic as the tools involved are exchangeable and is
not subject to any particular driving function, development technique, simulator
or application tools that might be intended. Thus, the approach can, in princi-
ple, be used for critical scenario identification for testing any autonomous driving
systems. In addition, we provide evidence showing that the approach is effective
in identifying critical scenarios for testing realistic autonomous driving functions.
We also want to highlight that, due to industrial confidentiality concerns, only par-
tial data and result analysis are presented, where sensitive information is removed,
still demonstrating the principal outcomes.

The rest of the paper is organized as follows. Section 2 describes concepts
based on the literature on critical scenario identification for testing of autonomous
driving systems. Section 3 explains the research method and context we use for
conducting the study. Section 4 and section 5 detail the case studies that use the
proposed approach for identifying critical test scenarios for two industrial driving
functions. We present discussions and limitations of the study in Section 7, and
conclude the paper in Section 8.

2 Terms and Related Work

In this section, we first present the terms and concepts used in this study; then,
we summarize the literature we surveyed on critical test scenario identification for
autonomous driving and compare our work.

2.1 Terms and Concepts

In this part, terms like scenario and critical scenario are introduced, and their com-
position and differentiation to other similar terms are presented. Besides, relevant
concepts predicated on those terms are described to form the basis of this study.
Our interpretation and discussion of these terms and concepts are still based on the
context of autonomous driving, with a particular focus on testing.
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Scenario

According to Ulbrich et al., a scenario is defined as a temporal sequence of scenes,
with actions and events of the elements that are involved within this sequence [105].
By actions and events, they mean, for example, maneuvers like cut-out and avoid
colliding with a vehicle ahead. Given this definition, a scenario consists of at least
one scene with corresponding actions and events, and a scene, in this context, is
embodied as the geo-spatially stationary environment, dynamic elements, and a
self-representation of all actors and observers.

Based on the definition proposed by Ulbrich et al. [105], Menzel et al. further
refined the definition of scenario into three different abstraction levels — functional,
logical, and concrete scenarios [72]. Specifically, functional scenarios usually de-
scribe the involved entities and their behaviors using a natural language. Logical
scenarios specify the state space of the functional scenarios with the relevant pa-
rameters, parameter range and distribution. Concrete scenarios are instantiations
of the logical scenarios by assigning concrete values for the parameters within the
desired value range and distribution. The relevant parameters are selected for log-
ical scenarios to describe the environmental constitution of the function scenarios,
the behavior of the elements involved, and the physical capabilities and constraints
of the autonomous vehicle. Bagschik et al. [10], have proposed a five-layer model
which defines the required parameters for the scenarios, including road-level, traf-
fic infrastructure, temporary manipulation of the road and traffic infrastructure,
objects, and environment. Yet, the value range and distribution of the parameters
and the possible relations between the parameters have to be further investigated
to instantiate realistic concrete scenarios.

We adopt the definition of scenario proposed by Menzel et al. [72] in our work,
where functional scenarios are retrieved from the system specifications and anal-
ysed to derive the parameters for logical scenarios. Subsequently, concrete sce-
narios are simulated and optimized to identify the most critical ones for testing
autonomous driving systems. We have also observed that similar terms such as
elements, entities, objects, and traffic participants are often used in the literature to
refer to the different road users in the traffic, such as pedestrians, cyclists, vehicles
of different types etc. We stick with the framework from Menzel et al. [72] to use
entities within the definition of scenarios.

Critical Scenario

There is no universal agreement as yet on what constitutes a critical scenario, al-
though different interpretations in the literature share a high similarity. Zhang et
al. describe a critical scenario as a dangerous road situation that may lead to an un-
safe decision for the autonomous vehicle, and appropriate countermeasures must
be taken immediately to avoid collision [109]. In contrast, Kluck et al. focus more
on the concrete scenarios level and consider a scenario to be critical if underly-
ing parameter values cause a malfunction of the autonomous driving system [60].
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Hallerbach et al. propose critical scenarios as the scenarios that need to be tested,
which can be derived from both functional and non-functional requirements (e.g.,
traffic efficiency, driver comfort etc.) [41]. Herein we take the interpretation from
Kluck et al., where critical scenarios are defined as the scenarios with a parameter
set that has a high probability of revealing unintended and unsafe behavior of the
systems, which may cause a collision or near-collision situations of the vehicle
and other entities on the road traffic [60].

An integral part entailed in critical scenarios is how we quantify and eval-
uate a scenario to be critical or not, thus the indication of criticality of a sce-
nario must be represented in a quantifiable way. Different surrogate measurements
for safety evaluation of traffic conflicts are used, for example, Time-to-Collision
(TTC), Post-Enchroachment Time (PET), Time-to-Brake etc [67]. Among these
surrogate indicators, TTC is used the most, according to a review study by Ali-
aksei et al. [63]. Safety metrics can also be extracted from industrial standards
and used as the criticality indicators, for example, ISO-15622 for adaptive cruise
control [85], ISO-26262 for general automotive development and test [33], and
Responsibility-Sensitive Safety (RSS) for autonomous vehicles [57]. Several per-
formance metrics, including safety, functionality, mobility, and drivers’ comfort,
are used for generating test scenarios for autonomous vehicles by Feng et al. [33],
and they use a combination of the maneuver challenge and exposure frequency as
the indicator of critical scenarios. Eventually, selecting the criticality indicators
must be specific to a particular driving system and the system specifications.

Furthermore, we must differentiate critical scenarios from similar terms to
avoid misunderstanding. Gambi et al. use accident scenarios from police reports
as critical scenarios for testing autonomous vehicles [35], whereas Klischat et al.
argue that an accident by a human driver may not necessarily be a critical scenario
and can be avoidable by others or autonomous vehicles [58]. Challenging scenar-
ios and complex scenarios are often used alternately, and one may consider they
are the same as critical scenarios. Riedmaier et al. [85] claim that a scenario is crit-
ical if the behavior of the system is evaluated after the scenario has been executed
either in real-world or in simulation and the criticality being measured. Scenarios
are challenging or complex only if the scenario itself is evaluated somehow and
classified as challenging or complex. Ponn et al. point out that challenging sce-
narios are not always necessarily critical ones but more often lead to critical ones
when executed [80]. Lastly, we also differentiate the concept of critical scenarios
from corner-case scenarios (also referred to as edge cases). Karunakaran et al.
define an edge case as an unknown and unsafe scenario that is hard to predict dur-
ing the test and can lead to severe results for the autonomous vehicle [57]. Since
critical scenarios can either be known or unknown, we believe the edge cases are
a subset of the critical scenarios that are of high interest for its identification and
testing the autonomous driving systems.
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Scenario-based Testing

Scenarios are commonly used to substantiate test cases for autonomous driving
systems [32]. As stated by Kluck et al., a test case is the value assignments of all
relevant parameters of the scenario, which essentially aligns with the definition of
the concrete scenarios [60]. However, a test case should entail not only a scenario
but also a pass-fail criterion to evaluate the resulting behavior of the system [36,
72]. An example test case for an autonomous lane-keeping function, as given by
Gambi et al. [36], is that the vehicle must follow a navigation path on a generated
road map. The test fails if the vehicle cannot get to the destination or drives out of
the lane.

Scenario-based testing is highly accepted and plays a key role in the validation
of the safety of autonomous driving systems [85]. It is inherently connected to the
concept of scenario as we have presented in the previous subsections, and it exam-
ines the resulting behavior of the autonomous vehicle in terms of interactions with
the road infrastructure, with other road entities, and compliance with the functional
specifications as well as the safety regulations [11]. The scenario-based testing
approach aims to reduce the test effort to a manageable number of scenarios by
limiting the testing to meaningful scenarios based on the testing budget [81]. The
number of concrete scenarios can be infinite due to the combinatorial explosion of
parameter values [11], and identifying all possible scenarios is difficult regardless
of which approach is used [41]. According to Batsch et al., scenario-based testing
usually runs in simulation with Software-in-the-Loop (SIL). Still, it can also be
carried out with Hardware-in-the-Loop (HIL), or in the real world with proving
ground (also known as test tracks in some studies) or regular road traffic [11].

Despite the remarkable benefits of using scenario-based approaches for test-
ing autonomous vehicles, identifying relevant scenarios for the system under test
remain the prerequisite, especially those critical scenarios that violate the desired
safety requirements [85]. Open questions still challenge us in regards to what con-
stitutes good test scenarios and how to generate them systematically [35]; how
to define and collect realistic test scenarios [32]; and how to identify the criti-
cal scenarios for testing [109]. Menzel et al. propose many different sources
that can be used for deriving test scenarios, which include, but are not limited to,
functional specifications, system boundaries, the operational environment, legal
requirements, and real driving data collected [72]. While common and safe sce-
narios without significant actions can be easily identified and reduced, the success
of a scenario-based testing approach is highly reliant on its ability to find more
critical scenarios within a given testing budget [82]. That is the core of the current
study — to establish a complete tool-chain for critical test scenario identification
and to employ it to test real autonomous driving systems.
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2.2 Critical Test Scenario Identification

The general idea of critical test scenario identification, as described by Ponn et al.,
is that a concrete scenario is selected, executed, and evaluated with the criticality
metrics [81]. As reported in the literature, there are different approaches for critical
scenario identification, ranging from using search-based algorithms, deep learning
techniques, expert opinions, etc. We categorize the literature we surveyed based
on our interpretation and compare it with our work in the following subsections.

For a complete literature overview, we refer to the systematic literature reviews
by Zhang et al. [114] for critical scenario identification, and Rajabli et al. [84]
for software verification and validation, as well as the survey by Riedmaier et
al. [85] for scenario-based approaches, all for assessment of safety of autonomous
vehicles.

Knowledge-based Approaches

The knowledge-based approaches leverage expert knowledge to generate, extract,
or select scenarios for testing. This approach is not frequently reported in the
literature due to its evident constraints. As an example, Ponn et al. [80] involve
experts from the autonomous driving domain for selecting parameters of scenarios
and assessing the weight of the parameters as well as evaluating resulting critical
scenarios for testing the autonomous driving systems.

The advantages of using this approach include the quick creation of an initial
catalogue of test scenarios [85], yet the drawbacks are non-negligible. It requires
expert involvement and is labour-intensive, and may lack the diversity and com-
plexity of real-world scenarios, especially those accidents that impose complicated
situations and rarely happen [109]. In addition, the generation and selection of sce-
narios might be subjective, where simple scenarios are ignored but can still cause
severe consequences. As a result, the derived scenarios are often considered lack-
ing evidence for proof of safety in real traffic [81].

Compared to our approach, we do not require any expert involvement, and
identification of the critical scenarios is automated by integrating the existing en-
gineering tools. Specifically, the selection of scenarios is based on optimizing the
parameter space and simulation of the scenarios. Thus, it is not limited or biased
by subjective knowledge acquired.

Data-driven Approaches

The data-driven approaches extract critical scenarios based on available data sets
that have been collected beforehand. The data can be presented in many different
forms, for example, scenario libraries, police accident reports, or sensor data col-
lected by test vehicles. Scenario extraction and selection techniques and tools are
then used for identifying critical scenarios from the data.
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Among the published studies, Gambi et al. [35] generate effective and critical
test scenarios for autonomous driving by reconstructing crash accidents from po-
lice reports in simulation, using natural language processing. Zhang et al. [109]
introduce a toolkit for extracting critical scenarios based on real traffic accident
videos and reproducing the scenarios in simulation. The extracted scenarios are
then used for the safety assessment of autonomous vehicles. Erdogan et al. [32]
propose an architecture to enable test scenario generation, where test scenarios
are first extracted from a video stream that contains real-world sensor data and
then is stored in a structured database cluster with scenario definitions and the
corresponding measurements. A user interface is implemented and included in
this architecture to customize and adapt the conditions for test scenario generation
based on the aforementioned scenario database.

Deep learning has been actively used for critical test scenario identification
through the studies that we surveyed. Ding et al. [30] train a generative model
for generating safety-critical scenarios by sampling through the parameters and
rewarding the risky scenarios. The generative model gets a higher reward when
a riskier scenario is generated. Another study that uses reinforcement learning
is reported by Karunakaran et al. [57] for automatically generating scenarios and
optimizing the learning towards the worst-case scenarios with respect to the RSS
safety metrics. A few other studies that employ deep learning techniques include
Batsch et al. [11] using Gaussian Processes to train and optimize the parameter
selection towards the most critical scenarios on the performance boundary, and
Jenkins et al. [52] using a recurrent neural network to generate accident scenarios
for testing the autonomous driving systems based on the in-vehicle and vehicle-
to-infrastructure data generated from simulators. In a related application domain,
Porres et al. [82] use online supervised learning to train a generative model for
searching and selecting critical scenarios for testing the autonomous maritime col-
lision avoidance systems through the operation.

Even though diverse techniques for extracting or generating critical scenarios
based on real driving data have been studied, limitations can be observed and de-
scribed in these studies. A prerequisite of using such techniques is a data set that
is comprehensive [85], whereas it is well known that collecting real driving data at
scale is both time-consuming and expensive but still does not guarantee to include
all corner cases [57,83]. As highlighted by Hallerbach et al. [41], the major draw-
back of using recorded data is the incompleteness of the data set, thus we have to
understand how the data is acquired and how representative it is. The quality of
the data can be affected by various factors such as the type of sensors used and
how they are installed [81], the location where the data is collected, and the fact
that rare-occurring situations are difficult to collect [30]. After all, we still have to
understand how to extract and select scenarios given massive data collected [59].

In contrast, our work does not rely on collecting data from different sources,
and thus is not subject to the quantity or diversity of the data set. Instead, we first
analyse the system’s function and operational design domain (ODD) based on the
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system specifications. ODD is a concept that defines the operational environment
of autonomous vehicles and is used to derive test scenarios and safety assessment
of autonomous driving systems [40]. Then we create an optimization model using
the existing engineering tools to integrate the parameters, the objective functions,
and a simulation platform that runs the scenarios and records the results. The
optimization model optimizes scenario generation towards the objective functions
for critical scenarios using the design of experimentation (DoE) [85]. DoE is a
systematic approach for analysing the relationship between input parameters and
output values and how the effect (output) changes over variation of the conditions
(parameter sets). The DoE generation in our work represents the selection of pa-
rameter values and the creation of new test scenarios.

Search-based Approaches

The search-based approaches employ search algorithms to optimize critical scenar-
ios from the operational design domain of the autonomous driving system. This
approach typically requires the execution of the scenarios in simulation and an ob-
jective function that measures the criticality of the scenarios. The search process
evolves based on the parameter space and the objective function value of the exe-
cuted scenarios. Also, it usually limits the search to a certain number of iterations
based on the testing budget and computational resources available. Our approach
falls into this category.

Klischat et al. [58] use evolutionary algorithms to optimize the drivable area
of the vehicle to generate complex scenarios for testing the motion planning of
the autonomous vehicles. Similar work is reported by Althoff et al. [6] to gen-
erate safety-critical scenarios for collision avoidance of autonomous vehicles by
optimizing the drivable area as well. Besides, Buehler et al. [19] also employ evo-
lutionary algorithms for generating critical scenarios for functional testing of an
autonomous parking system. Specifically, genetic algorithms are a class of evolu-
tionary algorithms commonly used for search-and-optimization problems. Gambi
et al. [36] use genetic algorithms to evolve the generation of virtual road networks
for testing the lane-keeping function. Kluck et al. [60] propose an approach for test
parameter optimization using genetic algorithms and have employed it for testing
an autonomous emergency braking function.

The advantages of using a search-based approach for solving optimization of
critical scenarios for testing of autonomous driving systems are prominent, since
the selection of parameter values is rather difficult before the test and covering the
entire parameter space is costly [81]. In addition, this approach does not rely on
collecting substantial driving data and is easy to implement. However, some lim-
itations are also stated in the existing studies. For example, generated scenarios
may not be realistic in the real-world traffic, simulation of the scenarios are often
computationally expensive, and only low-dimensional scenarios can be handled
effectively in optimization [30]. To complement the said limitations, Beglerovic
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et al. [12] simulate and optimize test scenarios based on a light-weighted surro-
gate model instead of the real system, Feng et al. [33] establish a sophisticated
model of relevant parameters, metrics, and searching process for critical scenario
generation, and Hallerbach et al. [41] create a complete tool-chain for critical test
scenario identification for autonomous driving systems.

We believe that the search-based approach can well compensate for the scarcity
of sensor data and generate critical scenarios that can be used to substantiate test
cases for autonomous driving systems. While most of the existing studies use
either a simple implementation of the autonomous driving function based on engi-
neering tools like MATLAB Simulink (e.g. Ponn et al. [80]), or publicly available
driving components such as DeepDriving and Beam.Al by Gambi et al. [35,36],
for validating the approaches, their effectiveness on realistic autonomous driving
functions is not demonstrated. Besides, many of them are also function-specific,
which is relevant to a particular function or operational domain for, e.g. parking
system [19], motion-planning [58], or highway scenario [12], and use only a lim-
ited set of scenarios for validation from e.g. NHTAS [109] and Euro NCAP [60].
Our approach is generic in that the tools involved are exchangeable and are not
determined by the driving functions, so it can, in principle, be used for critical test
scenario generation for any autonomous driving system. We also demonstrate the
effectiveness of this approach by using two real autonomous driving systems from
the industry. As articulated by Hallerbach et al. [41] and Ding et al. [30], there
exist very few studies that provide a complete solution for critical test scenario
identification which are generic to different autonomous driving systems. The ma-
jor contribution of our work is to address such a gap and facilitate the testing of
autonomous driving systems.

3 Research Context and Method

In this section, we describe the research context and method we use for the cur-
rent study. We conducted the work on critical test scenario identification in the
autonomous driving domain using the design science paradigm [89]. We formu-
late the problem of critical test scenario identification by looking into the existing
literature and industrial practices. Then we design the solution by integrating the
existing engineering tools and a workflow, and validate it in the industrial context
using two real autonomous driving functions by collaborating with Volvo Cars.
Lastly, we infer the potential usage of our approach for testing autonomous driv-
ing systems in general.

3.1 Research Context

We base the current study on the critical test scenario identification approach that
we presented briefly in our previous work [100] for testing autonomous driving
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Figure 1: Overview of the critical test scenario identification approach, consisting

of interconnected tools (left) which are used in the workflow (right). The figure is

an adaptation from our previous work, and we refer to Song et al. [100] for more
details of the approach.
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systems. As shown in Figure 1, the approach integrates three different engineering
tools and a workflow for the identification of critical test scenarios. The identified
scenarios can then be used to substantiate test cases for testing autonomous driving
systems.

The three engineering tools are, (1) a requirement and verification management
tool that is used for storing and analysing the system specifications; (2) an internal
simulation platform — SPAS, that is developed by Volvo Cars and used for early
verification of the active safety and autonomous driving functions; and (3) a pro-
cess automation and optimization tool — modeFrontier, which is a commercial tool
for process and design optimization. The tools are exchangeable, meaning that we
can substitute them with other similar tools to cope with different technical envi-
ronments or autonomous driving functions under test. For example, we can use a
different simulator like Carla [31] or AirSim [94] to simulate the scenario execu-
tion. Other simulators for autonomous driving are presented by Kang et al. [56]
and Rosique et al. [86]. Bhat et al. [15] discuss tools as well as methodologies for
autonomous driving systems during different engineering stages.

The workflow includes two main phases, see Figure 1 (right). In the first phase,
we start by analyzing the system specifications to understand the functionalities
and the operational design domain of the system. The system specifications can
be in different forms such as functional specifications, design documents, related
standards or regulations etc. Based on that, we select relevant parameters that
constitute a driving scenario and the value range and distribution of the parameters.
Also, we define objective functions that measure the criticality of the executed
scenarios. Lastly, we generate an initial suite of scenarios by sampling through the
parameter space based on the intended distribution and size of the initial test suite.

In the second phase, we create an optimization model in modeFrontier to in-
tegrate the selected parameters, objective functions, and a simulator. The opti-
mization model optimizes the scenario generation with respect to the objective
functions and identifies the most critical ones. It executes the scenarios in the
initial test suites in simulation, continuously exploring the parameter space and
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evolving through the completed simulation. We also configure the number of iter-
ations for the optimization model in modeFrontier based on the testing budget and
computational resources available.

We also base our study on collaboration with our industry partner — Volvo Cars,
where they support us by providing access to the tools above and two autonomous
driving functions, namely autonomous driving function and autonomous parking
function. We replicate our approach on these two functions for identifying critical
scenarios for testing such systems. By having access to real industrial systems,
we set up our approach and demonstrate its effectiveness for testing using realistic
autonomous driving functions.

3.2 Research Method

We conducted the study under the design science paradigm [89] and have mainly
conducted four steps as enumerated below. The problems of critical test scenario
generation challenges are conceptualized in the industrial context [100]. We report
our design of the critical test scenario identification approach (steps 1 and 2 below),
and validate the approach using two autonomous driving functions from Volvo
Cars (steps 3 and 4) and expand a potential usage context (step 4).

1. For each autonomous driving function, we analyze the system specifications
and implementation through the requirement and verification management
tool to understand the functionality and the operational design domain of
the system. We then identify the relevant parameters with the value range
and distribution of each parameter and define objective functions and the
criticality thresholds for the autonomous driving function.

2. We explore the tool modeFrontier and create the optimization model by in-
tegrating the parameters, objective functions, and the SPAS simulation plat-
form. Besides, we also configure the optimization algorithm, size of the
initial test suite, and the number of iterations for the optimization model.

3. We replicate the optimization model from the previous step by selecting a
different algorithm to compare two different algorithms and show our ap-
proach’s generality to different optimization approaches. To clarify here,
the contribution of the work is not to find the best algorithm but to provide a
complete approach for critical test scenario identification and generate crit-
ical test scenarios for real autonomous driving functions from the industry.

4. We start the optimization process in modeFrontier, and debug the errors if
the process fails or suspends. After the optimization processes finish, we
perform further analysis on the results in modeFrontier and export the find-
ings in tables and figures, which we present in section IV and V. The iden-
tified critical scenarios are provided to the related engineering teams to test
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and investigate potential flaws in the specification, design, or implementa-
tion of the system.

4 CASE I: Autonomous Driving Function

This section describes the work and results for the first case that uses the proposed
approach we present in Section 3. We aim to generate critical test scenarios for an
early version of an autonomous driving function from Volvo Cars, which in this
paper is referred to as the AD function (ADF).

4.1 Analyse System Specifications

ADF offers unsupervised in-lane driving in queue situations up to a specific speed
limit vyax, and enables the host vehicle to keep a safe distance to the preceding
vehicle within the lane. The cardinal functionalities of ADF can be summarized
as (1) driving in a lane and (2) proactively adapting speed. These requirements
specify that the host vehicle shall stay in lane and maintain a safe longitudinal and
lateral distance to infrastructure, other vehicles and entities on the road. In addi-
tion, the host vehicle shall comfortably control speed to comply with the current
speed limit.

Figure (2) shows snapshots in a scenario at different time steps. It is simulated
in the SPAS platform and demonstrates the functionality of ADF. The host vehicle
equipped with ADF is marked red, while others are visualized in blue. At the be-
ginning of the scenario, the host vehicle drives at a relatively high speed compared
to other vehicles. When driving around the bend, the host vehicle detects the front
vehicle in the same lane, thus ADF drives the host vehicle to decrease the speed
gradually. At the end of the scenario, the host vehicle manages to adapt its speed
to follow the front vehicle.

Figure 2: A series of visualized scenes of the autonomous driving function (ADF)
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4.2 Select Relevant Parameters

With the guidance of the requirement and verification management tool, the oper-
ational environment for ADF is characterized, where it covers all kinds of possible
influential factors on the road, including traffic, vehicle status, environment, in-
frastructure, other road users, and driver behavior.

We select parameters from two domains: (1) movable entities, including dy-
namic behaviors of the host vehicle and other road users, and (2) road topology,
including highway infrastructure and traffic conditions. In this section, we elabo-
rate on the parameter selection of movable entities as an example.

Road users include all kinds of vehicles, pedestrians and animals. Since the op-
erational environment for ADF is on the highway, pedestrians and animals rarely
appear. At the current stage, only vehicle models are taken into consideration. The
vehicles in the ADF function can be divided into three categories: host vehicle,
lead vehicle, and other vehicles. We denote the vehicle setby V = {V},, V|, Vo1, ...,
Von'}, N € Z, where V}, and V] represent the host and lead vehicle, while V1, ...,
V,n are other vehicles on the road. The simulation period of each scenario is
set to 7', unless a collision happens to trigger an early termination. In addition,
parameters for each movable object are analyzed in four aspects to define a sce-
nario: initial position, velocity, acceleration profile, and the number of vehicles.
In what follows, we denote the position, velocity and acceleration of vehicle-: at
time step-t by p;(t) = [p¥(¢), p! (t)], vi(t) and a;(t). Specifically, the velocity and
acceleration are expressed as scalars since only the longitudinal information is of
interest.

Initial position

The initial position of vehicles is selected, including the longitudinal and lateral
positions along the road. Several constraints are defined to limit value selec-
tions. Each vehicle should keep a safe distance to others. The two-second rule,
which a rule of thumb estimating safe distance at any speed for vehicles, is set as
the baseline to deduce minimal initial longitudinal distance [pf (to) — p§(to)| >

T Vi, 7 € V. Also, to limit the scope of a scenario, we define a distance range
between head-most vehicle and back-most vehicle in a simulation scenario, and its
upper limit is denoted by Dy,.x. Regarding the lateral distance, the vehicle must
leave a d¥. = 1.5m space when considering regular road width for a freeway of
3.5m [74], i.e., |p} (t) — p(t)| > diy,, Vi, j € V.

min’

Velocity

ADF provides the nominal function only in situations when the host vehicle’s ve-
locity is lower than a specified level, i.e., vy, (t) < vmax. To evaluate ADF’s
performance, the host vehicle should be able to detect, catch up and follow the
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lead vehicle. For this reason, the host vehicle should be in the right level of prox-
imity to the lead vehicle, which allows the lead vehicle to be detected at the initial
stage of a scenario. In addition, the initial velocity of the lead vehicle should fol-
low vy; (tg) < vy, (to), or otherwise, the ADF will be deactivated and switched
to human maneuver mode. Moreover, to keep the traffic smooth on the highway,
the minimum speed for all vehicles is set to a specified level vy,. According to
Abuelenin et al. [4], the traffic velocity on the road approximately complies with
a normal distribution, and thus normal distribution is used for speed in scenario
generation.

Acceleration

We restrict the acceleration of all vehicles on the road with |a;(¢)| < 3m/s%,i € V
at each time step during the simulation, based on the real-world traffic data [16].
Besides, the longest acceleration period is restricted to 3 seconds. Acceleration
values are sampled from a uniform distribution.

Number of vehicles

The number of vehicles on the road is jointly decided by d. , Dmax and the length
of a vehicle. Each scenario has |V| = N + 2 vehicles. Considering the special
scenario when there is only one lane in the road, to respect the safe distance, the
vehicles on the simulated segment of the road cannot approximately exceed 10.
The upper limit on vehicle number also reduces the design space and accelerates
the scenario optimization process. Moreover, to ensure there are enough vehicles
on the road to formulate a critical scenario, the minimum number of vehicles is set
to 5. Thus, the number of vehicles defined in a scenario is given as 5 < [V| < 10.

4.3 Define Objective Functions

‘We define the objective function from two perspectives to extract critical scenarios:
vehicle behavior and driver reaction. For vehicle behavior, criticality is defined as
the closeness to an accident, of which TTC is used as an indicator. TTC is consid-
ered an objective function that should be minimized. A threshold time (ATjyes) is
set to distinguish critical scenarios from non-critical ones.

Regarding the driver reaction, ADF should ensure the driving comfort as much
as possible [33]. For this reason, jerk, measured as the rate of change in accel-
eration, is selected as another objective function to evaluate performance. When
the jerk value is larger than +4m/s?, it would be not acceptable for most vehi-
cles [14]. Thus, we try to maximize the absolute value of jerk to find the critical
scenarios and set |aypres| = 4m/ s as a threshold for the corresponding scenarios
to be considered as critical.

Both TTC and jerk are evaluated at each scene and are updated by time frames.
We select the extreme values of TTC and jerk within a simulation period to repre-
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sent the criticality of a scenario. For this reason, the simulation will not be termi-
nated prematurely if the value of TTC or jerk has exceeded the threshold unless a
collision is detected.

4.4 Generate Initial Test Suite

To generate an initial test suite, we use MATLAB to translate the specifications in
the requirement and verification management tool, and send the outputs to mod-
eFrontier for DoE generation. ModeFrontier has different approaches for design
space exploration, and in this study, the Space filler DoE is leveraged to guide the
test scenario generation. This approach gives the most uniform filling of the design
space, where the risk of missing corner cases can be mitigated. Latin Hypercube
Sampling (LHS) is applied to generate random design configurations. In addition,
an initial test set ((i.e., with 50 scenarios, according to the rule of thumb for DoE))
is generated as the input for the initial evaluation.

4.5 Create Optimization Models

The optimization process in modeFrontier follows the scheme as discussed in Fig-
ure 1. First, test scenarios are initialized in MATLAB with concrete values for
each selected parameter and used for simulation in SPAS. After the simulation
finishes, results of objective functions are recorded and saved in modeFrontier,
where the data is parsed and analyzed. Subsequently, a new test scenario is gen-
erated with distinct parameter values by the optimization model and executed in
simulation. The entire optimization process ends after the specified number of it-
erations, and critical scenarios can then be extracted and analyzed. Figure 3 shows
the modeFrontier optimization model for ADF. The block on top is parameters
for generating new scenarios. The sub-blocks inside represent sub-parameters that
need to be specified for a scenario. The parameter values are transferred to the
middle block, where the SPAS simulation is performed. Lastly, the blocks at the
bottom are used to define the objective functions. The optimization is then based
on the objective functions of the scenarios in SPAS simulation.

Two optimization algorithms, namely Multi-Objective Simulated Annealing
(MOSA) and pilOPT, are used for optimization purposes. The optimization mod-
els that use each algorithm are created separately, and Figure 3 is an example of
the model how it looks. pilOPT is an in-house developed algorithm in mode-
Frontier, which can effectively handle the multi-strategy searching problem and
minimize the amount of time and computational resources required’. It combines
the advantages of local and global search algorithms to get the optimum solutions.
In contrast, MOSA is a heuristic searching algorithm, which is regarded as the
benchmark algorithm to be compared with pilOPT.

'"https://engineering.esteco.com/modefrontier/
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Figure 3: modeFrontier optimization model for the ADF

4.6 Run Simulation and Optimization

After creating the optimization model and setting up the simulation environment,
the optimization process is started in modeFrontier. The number of optimization
iterations is determined mainly based on computational resources available and
is set to 300 in this case. Higher intensive grid search can be performed with
more powerful computing resources, although the number of available software
licenses of commercial tools may also be limiting. After running the simulation
and optimization, the results are saved to analyse the critical scenarios further.

4.7 ldentify Critical Scenarios

Figure 4 shows the simulation results for each test scenario during optimization by
MOSA and pilOPT, and the relationship between TTC and jerk value is plotted.
In the figure, sequence information of optimization iterations is represented by the
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change of colors (i.e. blue the earlier iterations, and towards red means the later
iterations).
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Figure 4: modeFrontier optimization results from the autonomous driving func-
tion (ADF) with (a) MOSA and (b) pilOPT algorithms. Each dot represents a test
scenario. The dash lines are the criticality thresholds for TTC and jerk, respec-
tively, while the scale of the two axis is left out for confidentiality reasons. Colors
indicate the sequence number of the iterated simulations.

For the MOSA algorithm, we observed a clear boundary among test scenarios
with very low jerk values. In addition, another boundary exists to partition test
scenarios whether their TTC values exceed ATjes or not. For test scenarios with
low jerk values, the TTC values are mostly over AT, indicating that in those
test scenarios, the host vehicle does not experience the sharp acceleration, thus
being obvious safe scenarios. According to the definition of critical scenarios, if
a test scenario has |a;(t)| > |Gmres|,? € V, it is considered a critical scenario.
Therefore, quadrants 1, 2 and 3 in Figure 4 (a) are critical scenarios. As scenarios
are randomly distributed as in the figure, no distinct region feature and difference
emerge with the optimization process.

In Figure 4 (b), there is no obvious boundary on either axis, but the figure is
divided into two groups. Test scenarios in the first group, located on the upper part
of the figure, have remarkably high jerk values. The number of critical scenarios is
summarized in Table 1 to compare the difference between MOSA and pilOPT. The
number of scenarios caused by violating TTC and jerk constraints is not summing
up the total amount since there are some scenarios where both criteria are critical.
We conclude that, in this case study, pilOPT has a better performance in finding
critical scenarios than MOSA, especially with respect to jerk. This is, however, not
our primary focus here, and optimization algorithms have to be further explored.
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Table 1: number of critical test scenarios with respect to the objective functions

MOSA | pilOPT
jerk 33 87
TTC 18 28
total 45 95

5 CASE Il: Autonomous Parking Function

In this section, we describe the work and result for the second case that uses the
proposed approach we present in Section 3 to generate critical test scenarios for
an early version of an autonomous parking function from Volvo Cars.

5.1 Analyse System Specifications

The Autonomous Parking Function (APF) aims to detect and park the vehicle into
a feasible parking slot between two stationary vehicles autonomously, where a
driver is not required. The function should park the vehicle in both parallel and
perpendicular slots, either reversely or forwardly.

The case study APF version supports only the rearward parking in parallel
slots (i.e. parking slots that are parallel to the road direction) where the parking
manoeuvre is performed mainly in three steps. First, the vehicle drives at a low
speed and passively scans the empty slots using the ultrasonic sensors that are de-
ployed on the front side of the vehicle. Second, the vehicle identifies the target slot
and performs motion planning to park the vehicle in it without colliding the vehi-
cles around. Lastly, the vehicle starts to actuate the rearward parking manoeuvre
by controlling the steering wheel, propulsion, shifting gear and braking, and fol-
lows the trajectory that is computed in the previous step. When the vehicle reaches
the final position that has been planned, it deactivates the parking function and sets
a brake torque to stop the vehicle.

Figure 5 illustrates the function and operational scenes of APF. Specifically,
five vehicles (numbered 2—6 and in blue) are parked parallel to the road direction
and remain stationary. The host vehicle (i.e. numbered with 1 and in red — the
vehicle with APF installed, also known as ego vehicle) first drives from the left
and passes the stationary vehicles, it scans and identifies an empty slot between
the rear vehicle (4, referred as V) and the front vehicle (5, referred as V). Then
APF reversely parks the host vehicle into the slot without colliding with other
vehicles and stops at a feasible position subject to physical constraints such as
the slot length and the maximum steering angle the vehicle can complete. In an
optimal situation, the host vehicle should stop at the centre of the parking slot
with a sufficient distance to both V;. and V7, and the vehicle stands parallel to the
parking slot.
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Figure 5: A series of visualized scenes of the autonomous parking function (APF)

5.2 Select Relevant Parameters

After analysing the system specifications and current design of APF by using the
requirement and verification management tool, we identify two relevant parame-
ters for constituting a test scenario for APF, namely slot length and angle of the
stationary vehicle.

Slot length describes the actual length of the parking slot and is the primary
parameter that determines whether a parking slot is feasible or not. Buehler et
al. [19] adopted both the slot length and slot width as the two parameters that
depict the parking space and used them to explore critical test scenarios for an
autonomous parking system. Given the current design and the operational design
domain of APF, we presume a sufficient slot width in the current study and thus
select slot length as a relevant parameter for scenarios.

Based on the setup in Figure 5, slot length can be quantified and adjusted by
changing the position of either V;. or V; on the coordinate system of the simulation
platform. Herein we select the position of V; (referred as PoVy) as the derived
parameter for slot length. The value range of slot length contains both a lower
bound — the minimum slot length APF should handle without colliding the sta-
tionary vehicles, and an upper bound — an adequate slot length that APF manages
while keeping a sufficient distance to the stationary vehicles and a considerable
yaw angle to the parking slot. Due to confidentiality concerns, we do not report
the specific values here.

The angle of the stationary vehicle represents the yaw angle rate of the sta-
tionary vehicles (i.e. V;. and V), and is a parameter that determines the shape of
the parking slot as well as the motion planning of APF. Since we here focus on
rearward parking, and the slot length is generally larger than the standard parking
slot length, we consider the yaw angle of V; having the most impact (referred as
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AnVy). The value range for this parameter is set to [—3°, 3°] according to the
ISO-16787 standard [49] which is a standard specification for testing autonomous
parking functions and is up to each nation to implement. According to this stan-
dard, a vehicle should remain within [—3°, 3°] to the central line of the parking
slot after completing the parking maneuver. Thereby, we take this standard speci-
fication as a reference for setting AnV.

5.3 Define Objective Functions

The basic acceptance criterion for a parking scenario, according to ISO-16787
standard [49], includes that the host vehicle should keep a minimal 0.3 m distance
to other vehicles around and standstill with a yaw angle within £3° to the central
line of the parking slot. We consider scenarios beyond these two criteria critical
and should be identified as critical test scenarios for APF. Based on these two
criteria and the setup shown in Figure 5, the distance to V. (referred as DtV,.) and
V} (referred as DtVy) should be minimized through optimization to identify the
scenarios with less than 0.3 m distance to either of them. In addition, the yaw
angle of the host vehicle (referred to as AnV}) needs to be optimized to identify
the scenarios that end with an angle beyond +3°.

Nevertheless, we cannot have all the aforementioned objective functions in one
optimization model due to the natural conflicts among them. For example, mini-
mizing DtV is essentially maximizing DtV since these two vehicles are located
on the two end sides of the parking slot. Thus, these two objective functions must
be separated into two different optimization models. In addition, we cannot max-
imize and minimize AnV/}, at the same time to identify critical test scenarios that
are greater than 3° and those lower than —3°. Thus, these two objective functions
have to be separated into two different optimization models as well. The result-
ing set of objectives is four, hence leading to four optimization models with two
objective functions each as shown in Table 2.

Table 2: modeFrontier optimization models and corresponding objective
functions for APF

Model | Objective function 1 | Objective function 2
1 minimize DtV maximize AnV},
2 minimize DtV minimize AnV},
3 minimize DtV maximize AnVj,
4 minimize DtVy minimize AnV},

5.4 Generate Initial Test Suite

We generate an initial set of test scenarios in modeFrontier to enable further opti-
mization of the parameters towards the most critical scenarios. Based on the two
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parameters we select (i.e. PoVy and AnVy) and the objective functions we de-
fine, we first compute the size of the initial test suite using the rule of thumb for
DoE [102], as shown in Equation 1. N, is the number of parameters and Noy;
is the number of objective functions. As for APF, the size of the initial test suite is
eight, given two parameters are selected, and two objective functions are defined
for each optimization model.

Initial suite size = 2 % Npgr * Nop; )

Next, an initial suite of test scenarios can be generated by sampling the pa-
rameters based on the intended distribution. However, the realistic distribution for
both DtV,. and AnV}, are unclear and are difficult to model or predict. Hence, we
generate the initial test scenarios with the Latin Hypercube Sampling (LHS) strat-
egy and uniform distribution. In LHS, the parameter space is divided into equal
parts with respect to the target sampling size (i.e. the size of the initial test suite)
and the sampling position is randomly chosen according to the parameter distribu-
tion [11]. LHS is considered superior to other sampling approaches like random
sampling and ensures that the entire parameter space is covered as evenly as possi-
ble [11]. As there is no such real distribution for the selected parameters provided,
we also use the uniform distribution to assure every parameter value interval is
equally likely.

5.5 Create Optimization Models

We create the optimization models in modeFrontier by integrating the selected
parameters, the objective functions, and the SPAS simulation platform. Similar to
what has been presented in Figure 3, the parameters are defined as inputs to the
optimization model and are used to generate scenarios for simulation. An initial set
of values for the parameters are sampled preliminary with LHS and are considered
the initial test suite to enable further optimization of critical test scenarios. The
objective functions are the output of the optimization model and are optimized
based on the parameter space and the completed scenario simulation.

We configure the number of optimization iterations to 80 based on the testing
budget and computational resources available. In other words, the optimization
model first runs the initial test scenarios (i.e. 8 scenarios) in the SPAS simula-
tion platform and tracks the objective functions’ value. Then the optimization
model optimizes the selection of parameters for another 72 iterations based on the
completed simulation results. Parallelization of optimization is possible in mod-
eFrontier, given enough computational resources are available. Lastly, we select
the optimization algorithm in modeFrontier based on our previous experience (i.e.,
Section 4) where pilOPT was used. In addition, we also replicate two optimization
models (1 and 3 in Table 2) using MOSA to compare two different optimization
algorithms and demonstrate the generality of our approach in using different op-
timization strategies. Thus, we create six optimization models in total, as shown
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in Table 3. To clarify again, we do not aim to find the best optimization algorithm
in this study but to integrate the entire tool-chain and a workflow for critical test
scenario identification.

Table 3: modeFrontier optimization models and results for APF. By results, we
mean the number of critical test scenarios identified with respect to the objective

functions.
Model | Objective function 1 | Objective function 2 | Algorithm | Iteration | Result
1 minimize DtV maximize AnVj, pilOPT 80 41
2 minimize DtV maximize AnV}, MOSA 80 40
3 minimize DtV minimize AnV}, pilOPT 80 35
4 minimize DtV maximize AnV}, pilOPT 80 40
5 minimize DtV maximize AnV}, MOSA 80 29
6 minimize DtV minimize AnV}, pilOPT 80 30

5.6 Run Simulation and Optimization

We start the optimization models in modeFrontier, and the optimization process
runs automatically. For each optimization iteration, the simulation result is recorded
and optimized with respect to the objective functions. After all iterations are com-
pleted, the optimization process terminates, and full results are saved. Since sce-
narios are simulated in the SPAS simulation platform and are triggered from mod-
eFrontier, we have set a maximum time for a single simulation session to avoid
suspending the entire optimization process.

5.7

The result of the optimization models can be visualized in modeFroniter using
different charts or statistical analysis tools and be exported in many different for-
mats. As mentioned earlier, we created six optimization models for APF, and each
model consists of 80 evaluation iterations. By filtering the results with the critical-
ity thresholds we define, the optimization models have identified 29 to 41 critical
scenarios, as indicated by the last column (i.e. Result) in Table 3.

The critical scenarios are identified exclusively on one of the objective func-
tions — AnV}, — and no critical scenarios identified for both DtV, and DtV;.
As shown in Figure 6 (a) — the result of optimization model 1 from Table 3 for
minimizing DtV,. and maximizing AnV}, using pilOPT, no critical scenario (i.e.
< 0.3 m) is identified in the DtV,. dimension as all scenarios resulted in a suf-
ficiently large distance for DtV,., which is considered as safe according to the
industrial standard. That indicates the early implementation of the function we
used is conservative on the distance to other vehicles. In contrast, 41 critical sce-
narios are identified based on the AnV} which are greater than 3° to the central
line of the parking slot.

Identify Critical Scenarios
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Furthermore, Figure 6 (b) shows the correlation between parameter AnV; and
the objective AnV},. The result indicates that AnV; does not have a general effect
on AnV}, and it is randomly distributed regardless the value of AnV}. In contrast,
an explicit pattern is drawn on PoV; and AnV}, in Figure 6 (c), in which AnV},
keeps increasing when PoV; decreases. When PoV; is lower than a specific value,
AnVj, is over the criticality threshold 3° and scenarios are identified as critical
scenarios.
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Figure 6: Result of minimizing DtV,. and maximizing AnV}, using pilOPT. The
dash line in the sub-figures is the criticality threshold for AnV, and the dots are the
scenarios executed in the simulation. Scenarios on the right side of the dash line
in sub-figure (a) and above the dash line in sub-figure (b) and (c) are the critical
scenarios identified on with AnV}, larger than 3°. The scale of PoV in sub-figure
(c) is removed for confidentiality reasons.

The results are consistent when using other optimization models with different
combinations of objective functions. We identify critical scenarios on AnV}, only,
and the visualized results indicate that AnV/}, gets larger and exceeds the criticality
threshold when PoVy declines. The observations suggest that adapting the slot
length and angle of the stationary vehicle does not generate critical test scenarios
for APF with respect to the distance to the stationary vehicles. However, both of
them lead to critical test scenarios where the angle of the host vehicle exceeds 3°.
A clear trend is observed on the slot length that smaller slot length generally in-
creases the angle of the host vehicle, which means a bad orientation to the parking
slot after the parking maneuver is done.

Lastly, pilOPT generally identify more critical scenarios than MOSA for APF
in this case, although there are no significant differences between them consis-
tently. For the optimization models that minimize DtV,. and maximize AnV},, pi-
IOPT identifies 41 critical scenarios, and MOSA identifies 40. As for the models
that minimize D¢V} and maximize AnV},, pilOPT identifies 40 critical scenarios
where MOSA identifies 29. According to the results, pilOPT performs better than
MOSA, while further comparison between these two algorithms is required. Since
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we do not aim to address the best optimization algorithm in the current study, we
have demonstrated that our approach effectively identifies critical test scenarios
and is general to different optimization algorithms or strategies.

6 Discussion

In this paper, we extend an approach for critical test scenario identification for au-
tonomous driving and have used it for testing real autonomous driving systems.
We argue that testing all possible driving scenarios in real road traffic is imprac-
tical, since it is expensive, time-consuming, and may still not cover all the rare-
occurring traffic situations [57, 109]. In contrast to Kalra et al., who claim that
millions or even billions of miles of driving tests are required to demonstrate the
reliability of an autonomous vehicle [55], testing of autonomous driving functions
must be based on a feasible number of test scenarios and focus on the most critical
ones [60, 81]. Using critical scenario identification and simulation is considered
a good alternative to address the gaps as mentioned above and enable testing of
autonomous driving functions in a more efficient way [60, 68, 84].

In our approach, we integrate the existing engineering tools and a workflow
as a complete solution for critical test scenario identification. In contrast, exist-
ing studies mostly present a partial solution for critical scenario identification and
barely provide a complete tool-chain [41]. Applying a partial solution in practice
may require additional work to integrate such an approach with the missing com-
ponents or even not compatible with the used technical environment. We integrate
different tools and a workflow into a systematic approach, which is complete and
easy to use. The proposed approach relies on optimizing the parameter selection
and simulation of the scenarios. As the tools involved are exchangeable, the ap-
proach is flexible and generic for testing different autonomous driving functions
that are not subject to specific tools, techniques, or sensors employed in the func-
tion or simulation.

We demonstrate the effectiveness of our approach for critical test scenario
identification, using real autonomous driving functions in both high-speed and
low-speed maneuvering domains. This is different from the most common ap-
proach for validating proposed solutions for critical scenario identification in ex-
isting studies, which use a simple implementation of the autonomous driving func-
tion or publicly available driving components like DeepDriving [36]. Besides,
many studies demonstrate the effectiveness of their approaches based on limited
settings, such as a pedestrian step-out scenario [11] and certain scenarios from
Carla Scenario Runner Library [30]. Even though the potential of such approaches
might be extended, the connection to real autonomous driving functions and to find
critical scenarios in general is not explicitly provided.

The two cases we present in Sections 4 and 5 include the actual work we im-
plement and the results achieved on real autonomous driving functions using the
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proposed approach. While the results are generally effective in finding the critical
test scenarios for the given autonomous driving systems, we would like to stress
that they are merely an early version of the autonomous driving systems. Thus,
the results are subject to the current design and specifications of the systems when
conducting the study. The main purpose is to demonstrate the industrial relevance
and applicability of the approach in practice.

Future improvement and extension of our approach regarding its design and
implementation are multi-fold, including, e.g. scenario composition, parameter
distribution, and optimization algorithms. First, the composition and representa-
tion of scenarios can be improved to include different driver behavior models and
enable the definition of complex spatio-temporal interactions between different
entities within the driving maneuver. As highlighted by Feng et al. [33], existing
studies mostly handle only low-dimensional scenarios, whereas the actual opera-
tional design domain for the autonomous driving functions is much more compli-
cated. OpenDrive and OpenScenario, as used by Zhang et al. [109] and Erdogan
et al. [32], to define static and dynamic elements in a full driving scenario in a
structured way are good references to explore.

Second, realistic distribution of the relevant parameters selected should be in-
vestigated to improve the realism of the scenarios and real occurrence of the sce-
narios. As articulated by Batsch et al. [11], scenario-based testing sampling re-
quires a true distribution of the parameters. A shift in the distribution may impact
the relevance and potential damage of the scenarios [85], thus the distribution of
parameters are important and need to be identified [30]. Different sampling ap-
proaches such as adaptive sampling [75], importance sampling [33], or modelling
the distribution are a few candidates to be further studied.

Thirdly, we also propose to evaluate different optimization algorithms to best
fit the generation of critical test scenarios for different autonomous driving systems
and use parallelization to improve the efficiency of the simulation and optimiza-
tion [82]. They are good directions to be sorted out in future research yet not
the goals in the current study. Especially that parallelization is already a feasible
option in optimization tools like modeFrontier; it’s more about the computational
resources that can be allocated count. Our primary focus in this work is to es-
tablish a complete approach for critical test scenario identification for autonomous
driving and demonstrate the effectiveness of such an approach for the realistic test-
ing of autonomous driving systems. As a preliminary step, tools and a workflow
are integrated, and critical test scenarios are generated for real autonomous driving
systems from the industry. Thus, it constitutes a basis for further exploration and
refinement of the approach in practice.

Given the enormous challenges of testing autonomous driving systems, we
face [61, 62], the importance of using simulation and critical test scenario gener-
ation increases steeply [52]. Further, as stated by Beglerovic et al., selection of
relevant parameters, objective functions, and appropriate evaluation criteria is a
non-trivial task since each of them comes with its own challenges, and the qual-



7 Conclusion 65

ity of critical test scenario generation is highly dependent on them [12]. Despite
that sub-components within our approach can be further expanded and improved,
we believe our work is worth the efforts and has a huge potential in the future in
ensuring the safety and reliability of autonomous vehicles. Particularly since very
few studies have been reported for presenting a complete solution for critical test
scenario identification that is general for different autonomous driving systems,
according to Hallerbach et al. [41].

7 Conclusion

Safety and reliability are indispensable properties for autonomous vehicles, yet
there is no common standard way to test autonomous driving functions system-
atically and efficiently. Conventional requirements-driven testing approaches are
impeded due to uncertainty of the operational environment and the complexity of
the driving scenarios. Thereby, identifying the most critical scenarios for testing
the autonomous driving systems is developed.

We establish a complete approach with integrated tools and a workflow in this
study to explore critical test scenarios and facilitate the testing of autonomous
driving systems. As a pilot study, we implement the approach on two autonomous
driving systems from the industry by partnering with Volvo Cars. The results sug-
gest that our approach effectively identifies critical test scenarios. The identified
scenarios can be used to substantiate test cases for autonomous driving systems
either in simulation or in the real world.

Future extension of the approach aims to improve the scenario representation,
incorporate the realistic distribution of the parameters, and compare the effec-
tiveness of different optimization algorithms. Eventually, the study provides a
feasible and complete tool-chain for critical test scenario identification for au-
tonomous driving and a basis for building sub-components further upon. Given
the widespread attention on autonomous driving and the corresponding challenges
for testing the enabling functions, we shed light on testing different autonomous
driving systems efficiently and effectively.
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Abstract

While autonomous driving systems are expected to reduce road accidents and im-
prove traffic safety, understanding intensive and complex traffic situations is es-
sential to test such systems under realistic traffic conditions. In this work, aimed
to generate critical test scenarios, we propose a new model that defines the dis-
tribution of TTC (Time-to-Collision) for the vehicle—pedestrian interactions at
unsignalized crossings, based on the traffic density. The model is used as an input
for the optimized identification of critical test scenarios. We validate the model
using real traffic data collected in Sweden. The result indicates that the model is
effective and consistently upholds the real distribution, especially for critical TTC
below 3 seconds. We also demonstrate its use to test autonomous driving sys-
tems by connecting it to the critical test scenario identification for an auto-braking
function from the industry. As a first step, our contribution is a worst-case model
defining the TTC distribution that serves as input to testing autonomous driving
systems and ensures the realism of the test scenarios.
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1 Introduction

Autonomous driving systems, for example, auto-braking and auto-steering, are
said to reduce road accidents and improve road safety, as they do not encounter
challenges for human drivers, such as fatigue, distraction, and drunk driving [21].
Efficient sensor systems, like radars and cameras, have enabled capturing of the
environment and traffic dynamics. Yet, the demand for testing autonomous driv-
ing systems based on understanding and analyzing complex traffic situations has
never been greater [93]. The prevalence of autonomous driving systems calls for
imminent efforts to model the traffic flow and road safety to constitute a basis for
testing those systems under a realistic traffic setup.

One of the most critical places in the road traffic are intersections where a high
concentration of vehicle—pedestrian interactions appear [21]. An existing study
has revealed that 25% of the pedestrian fatalities in Europe occur while using a
pedestrian crossing [39], which made pedestrian crossings a rather crucial scene
to investigate especially at unsignalized crossings, where the right of way is not al-
ways clear [21]. According to Bella et al., most of the vehicle—pedestrian incidents
are caused by the drivers fail to yield to a pedestrian [13]. In addition, pedestrians
are more flexible and less regulated on their crossing behaviors, which makes their
behaviors often unpredictable, or even illegal [29]. As a result, pedestrians have
become one of the most vulnerable users on the road. Thus, autonomous driving
systems, like autonomous braking function, to support vehicle—pedestrian inter-
action is of high interest, and consequently, methods and models for testing such
systems.

We perform this study in an industrial, autonomous driving system context,
where test scenarios are generated from a model of the system operation environ-
ment [100]. Based on the co-optimization of the test suites generated from the
environment model and the autonomous driving system, critical test scenarios are
identified with an objective function. For example, the objective may be to find
test scenarios where the vehicle is close to collision, which is then turned into test
cases for testing autonomous driving functions, which may occur both in simulated
and real vehicle environments.

The research goal of this study is to propose and validate a worst-case model of
vehicle—pedestrian interactions that facilitate testing of autonomous driving sys-
tems. The model takes the macroscopic characteristics of the traffic, namely the
traffic density, and predicts the cumulative time-to-collision (TTC) distribution for
vehicle—pedestrian interactions at unsignalized crossings.

The model should be as simple as possible while capturing the essential char-
acteristics of the traffic situation. Thereby it contributes to defining the operational
design domain (ODD) of the safety-critical system [40]. By worst-case, we mean
careless drivers and pedestrians that do not pay sufficient attention to the ongoing
traffic. We are particularly interested in the distribution of the high-risk scenarios
with critical TTC values. The predicted TTC distribution serves as an input for test
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scenario generation and optimization for autonomous driving systems. We validate
the model using a real-world traffic data set collected in Sweden and demonstrate
its use by deploying it to critical test scenario identification for an autonomous
braking function. To the best of our knowledge, no such model has been estab-
lished before, and no existing research was found on incorporating similar models
for testing the autonomous driving systems, although they are prerequisites for
safety assessment [40].

The rest of the paper is organized as follows. Chapter 2 describes the existing
literature we found on traffic modelling for vehicle—pedestrian interactions and
critical scenario identification. Chapter 3 describes the context and method we use
for conducting this study. Chapter 4 describes the model construction and Chap-
ter 5 presents the model validation. In Chapter 6, we particularly demonstrate the
use of the model for testing autonomous driving systems by using an autonomous
braking function. Lastly, we discuss the model and its validity in Chapter 7 and
conclude the paper in Chapter 8.

2 Related Work

Existing studies reporting on testing of autonomous systems have proposed using
model-based approaches and formal verification to facilitate automated test gener-
ation and execution [45]. One primary challenge with the approaches mentioned
above for highly autonomous systems is the adaptive behavior of the system and
the unpredicted environment that is unknown during design. It essentially leaves
an infinite set of scenarios to be covered during test [99]. To address the said
challenge, we and among other studies, proposed a critical scenario identification
approach to reduce the test scenarios by optimizing the possible test scenarios and
identifying the most critical ones for testing through simulation [58, 60, 100].

Our approach relates to a more general concept of operation design domains
(ODD) [40]. An ODD is a definition of the operational environment of an au-
tonomous driving system and is used to assess the safety of such systems. The
ODD contains a world model that models use cases of the system. In our ap-
proach, we use the world model to generate test scenarios for both simulated and
real vehicle testing.

Testing of autonomous driving systems has to be based on analyzing and mod-
elling the traffic flow as well as the interactions between different road users [18,
20]. Jiang et al. collected urban midblock crosswalk data at multiple locations
in Germany and China and observed a Weibull distribution of the TTC in their
study [54]. Fu et al. focused on analysing the pedestrians’ safety at unsignalized
crossings during night time, using thermal video data and the surrogate measure-
ment of Post-Encroachment-Time (PET), representing the time difference between
a vehicle is leaving the area of encroachment and a conflicting vehicle entering the
same area. Their result has shown a significant impact on the pedestrian’s safety



70 A VEHICLE-PEDESTRIAN TIME-TO-COLLISION MODEL FOR TESTING

during the night [34]. A study by Chen et al. used unmanned aerial video data
and analysed the surrogate safety of pedestrian-vehicle conflicts at intersections,
using both TTC and PET [22]. Other studies on pedestrian models for autonomous
vehicles at crossings include Jayaraman et al. [51] modelling the pedestrians’ deci-
sions at intersections, Zhang et al. [113] predicting the path of pedestrians, and risk
analysis at unsignalized crosswalks using data mining techniques [76]. While the
studies introduced mainly focus on analysing or modelling the vehicle—pedestrian
interactions based on collected traffic data, the data used is rather limited for de-
riving a generic model and location-specific. In addition, they do not include the
potential on how such models can relate or contribute to the testing of autonomous
driving systems. In contrast, our work proposes a model that is not relying on any
existing traffic data and serves as an indispensable input for critical test scenario
identification.

Recent studies also show the possibilities of using deep learning approaches
for testing autonomous systems and have claimed the efficacy of such approaches.
Specifically, Porres et al. describe an approach for identifying critical test scenar-
ios for maritime collision avoidance systems, using a neural network that is trained
in the runtime [82]; Parthasarathy et al. introduce a systematic framework for gen-
erating driving maneuvers for testing autonomous driving systems [77]. However,
such approaches may lack robustness and generality due to the incompleteness and
biases in the training data. Therefore, they may not identify scenarios that are not
represented in the training data set, and for most of the time, the scenarios recorded
are not critical [58]. As a comparison, our approach employs a traffic model that
predicts the worst-case distribution of the driving scenarios and enables critical
test scenario identification under a more realistic setup.

3 Research Context and Method

As already mentioned in Chapter 2, one of the principal challenges for testing
autonomous driving systems is the infinite set of potential scenarios to be covered
during test [99]. The limitations of exhaustive testing in the real world due to
limited test budgets and rare occurrence of risky events have led to the exploration
of more efficient approaches to reduce the number of tests through simulation, like
our critical scenario identification approach [100], as summarized in Figure 1.

The critical scenario identification approach is used for generating critical sce-
narios for testing autonomous driving systems. The general idea of this approach
is to first model the operation environment and system under test, based on se-
lected parameters and objective functions, and generate an initial test suite. Next,
the selection of critical test scenarios is optimized through simulation to identify
the scenarios that are beyond the criticality thresholds, similar to search-based test-
ing [44]. The identified critical scenarios are then executed during testing, either



3 Research Context and Method 71

ROMERED software and SPAS Generate initial test database
and verification parameters S"E::z:':_‘n Analyze Select Define Generate
management Pty | patiorm | system relevant objective initial test
tool / i \ / 0(\ MATLAB/ specification parameters functions suite
| workflow & Simulink

Find critical scenarios with optimization
Identify Optimize Create
o " Run et
critical objective || 5 optimization
- : simulation
scenarios functions model

Figure 1: Overview of the critical scenario identification approach (adapted from
our previous work [100]).
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in simulation platforms or real-world traffic. We refer to our previous work [100]
for more information on this approach and related tools that are involved.

One major step in this approach is selecting relevant parameters that define a
driving scenario, including both the value range and distribution of each param-
eter and ensuring that the scenarios are within the desired boundaries and fre-
quency. Even though an enriched set of common distribution functions are pro-
vided in applications like modeFrontier, customized and realistic distribution is
more favourable to ensure the feasibility of the test scenarios. Yet the distribution
of a specific parameter, for example, TTC, under a certain test scene, for example,
at unsignalized crossings with different traffic densities, is still not well understood
and properly modelled.

We conducted our study in the context of the said approach. We aim to con-
struct a worst-case model that predicts the distribution of TTC for vehicles—pedestrian
interactions based on the traffic density. We use the model as an input for critical
scenario identification for testing autonomous driving systems. We have conducted
the study in four steps.

1. The model is constructed based on a Poisson distribution of the vehicles’ and
pedestrians’ arrival. The model takes two parameters, namely the vehicle
mean arrival rate and pedestrian mean arrival rate and outputs the predicted
cumulative distribution of TTC under the given density.

2. The model is implemented in Matlab, and examples of the prediction by the
model under different traffic densities are generated as a preview.

3. The model is validated through a real traffic data set collected in Sweden by
Viscando. The TTC distribution predicted by the model is compared against
the distribution from real traffic data.

4. We study an industrial autonomous braking function and demonstrate us-
ing our model to facilitate the critical scenario identification for testing the
function.

The work is conducted under the design science paradigm [89]. The problems
of test scenario generation challenges are conceptualized in the industrial con-
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text [100]; we report our design of the traffic model and optimization procedures
(1 and 2 above) and validate the solution against real data (3) and a potential usage
context (4).

4 Model Construction and Simulation

In this section, we describe the construction of the vehicle-pedestrian model based
on the Poisson distribution of vehicles’ and pedestrians’ arrival at an intersection.
In addition, we also implement the model in Matlab and generate examples of
prediction of the cumulative TTC distribution under different traffic densities as a
quick check of the model.

4.1 Model Construction

The Poisson distribution [2] is selected as the primary component for modelling
the arrival of vehicles and pedestrians at an intersection since their occurrences
in the traffic are random and independent. Therefore, given the mean rate of the
vehicles and pedestrians, hereafter referred to as A, and A, respectively, the Pois-
son distribution expresses the probability of having a certain number of vehicles or
pedestrians occurring within a given time frame. Chen uses the same distribution
at al. for modelling the arrival time of pedestrians at an unsignalized crossing and
is used for evaluation of the safety of the driving strategy of the autonomous vehi-
cles [21]. Besides, Hu et al. discuss using the Poisson distribution for modelling
the number of crashes for road traffic safety [46].

Further derivation of the standard Poisson distribution leads to the probability
of a certain time interval between the occurrence of two events, that is, the likeli-
hood of having a specific time interval between two vehicles, given the mean rate
of \,. More specifically, Equation (1) gives the mathematical representation of
the probability of the time interval between vehicles, herein Intv is defined as the
time interval between vehicles, k£ number of vehicles, ¢ the specified time frame in
seconds, and P is short for probability.

P (Intv <t)=1-— P(Intv > t)
= 1 — Poisson(0 vehicle in time t)

Mt)F et M
%, givenk =0

Ayt

:1—
=1—e"

Based on the previous equation, Equation (2) is the probability of a certain time
interval between two vehicles. ¢, in bold, is an interval instead of an exact value.
A constant time step At is introduced in this equation, which is a small time unit
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subject to the desired level of precision. We have selected 0.1 seconds as At in the
current study, as it is a typical precision for TTC in previous studies [24,91] and
an adequate precision to model the distribution in our work. The derived equation
is used for model construction, and integration of the equation in the model is
detailed in a later paragraph in the same section.

P (Intv =t), herein t is interval (t — At, t]
=P (Intv <t)— P (Intv <t— At)
— (1= e M) = (1 — e Molt=a0)
B W - PP

2

e

TTC is another primary component used in our model, and according to Schwarz,
TTC is originally defined as the time until two road users collide if they continue
with their current speed and direction [93]. TTC is a surrogate measurement of
road safety and describes how imminent a collision will happen. A lower TTC
value means a higher risk for a collision to take place, and vice versa [54]. A low
TTC value, for example, under 3 seconds, is considered critical for the vehicle—
pedestrian interaction at crosswalks and autonomous driving in the urban environ-
ments by Schneemann et al. [92]. Another study by Kluck et al. has considered
TTC below 1 second as critical for optimizing parameters for testing the advanced
driver-assistance systems [60]. The TTC family of measures is reported to be the
most commonly used safety indicator in a review study by Laureshyn et al. [63].

In the current work, we define TTC as the time remaining before an oncoming
vehicle hits a pedestrian at the moment that the pedestrian is entering the inter-
section, given that the vehicle and pedestrian continue in their current speed and
direction.

P(TTC<H)=P(D<t-V)
Minty

t-V

= P(Intv <t)+ Z P(Intv) - —————

= Intv-V

M;

intv t (3)

= P(Intv <t)+ Z P(Intv)  ——

Intv=t Intv

Minty — —_ —
S Z (e (=AY _ g=Aut) ¢
Intv

Intv=t

Equation (3) is the derived model for cumulative TTC distribution by integrat-
ing the distribution of vehicles’ interval, as listed in Equation (1) and (2), and the
aforementioned definition for TTC. Herein, D is the distance between vehicle and
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P(TTC< 1) = {N /A , if no pedestrian occurs @

Equation(3) , if pedestrian(s) occur

M.
into 4 Ao (t=AL) _ =Xyt
P(TTCS t) _ (1 _e—Apt) (1 _ e_)‘“t + Z (6 — & )
T Intv=t ntv

@
(D Probability of pedestrian(s) occurrence, as pre-condition for computing TTC

@ Probability of vehicle—pedestrian TTC < 't
(&)

pedestrian, and V' is the vehicle’s speed. Since we consider the worst-case situa-
tions where drivers and pedestrians cross the intersection without paying enough
attention to the traffic, the model is, in essence, the summation of the probability
of each possible vehicle interval multiply by the probability of a pedestrian occurs
in a specific time in front of the vehicle, given that the vehicle and pedestrian move
as intended and no interference while crossing the intersection. Besides, for vehi-
cle intervals that are smaller than a given time ¢, TTC is naturally smaller than ¢
regardless of where the pedestrian is located between vehicles.

A practical part of this model is the selection of M;,,, which is the theoretical
maximum time interval between two vehicles. M,,:, can be selected as either
being the maximum vehicle interval based on the empirical data at an intersection
if available or the maximum interval that remains a certain probability under a
Poisson distribution. We have set M4, to 460 seconds, since the probability of a
vehicle appearing beyond this interval is lower than 0.01 even under an extremely
low vehicle density, like A\, equals 0.01/s (36 vehicles per hour). Furthermore, the
probability of having a pedestrian occurs at a specific time in front of the vehicle,
e.g., 3 seconds, is low, given this vehicle interval. Thus, the probability of having
a critical TTC, e.g., below 3 seconds for vehicle interval above 460 seconds, is
negligible.

Equation (3) indicates the distribution of TTC given a pedestrian enters the
intersection. However, TTC is valid only when a vehicle—pedestrian interaction
occurs; otherwise, it will be illogical to compute a TTC without a pedestrian oc-
curring. Thus, the model should be further divided into two branches under two
different circumstances, as shown in Equation (4). In the first branch, TTC is not
applicable without a pedestrian occurring, and the second branch adopts Equation
(3) with pedestrian(s) occurring between two vehicles. Integration of these two
branches will be the final model, as in Equation (5), which handles the overall
TTC distribution of vehicle—pedestrian interactions at the intersection.
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4.2 Model Implementation

We implemented the model in Matlab to preview how the model predicts the cu-
mulative distribution of TTC under different traffic densities. We have selected
three arbitrary traffic densities from low to high, with A, = 0.02/s and A\, =0.01/s;
Ay = 0.04/s and A, =0.02/s; A, = 0.1/s and A\, =0.04/s, respectively. The plot-
ting results are given in Figure 2, where we show the low TTC part (below 5
seconds) since the low TTC section is the most critical part in road traffic. The
lines in the figure show the cumulative distribution of TTC under the given traffic
densities. The differences are obvious: higher traffic density has a higher proba-
bility of getting a low TTC situation in the traffic. This result is fully consistent
with the findings in another empirical study reported by Loukaitou-Sideris et al.
in their traffic safety study [66], where higher traffic density shows a significant
relationship to the number of pedestrian—vehicle collisions.

0.14 T T T T T T T T T
A, =0.02s, /\p =0.01/s
A, =0.04/s, /\D =0.02/s
A, =01, /\p =0.04/s
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Figure 2: Model prediction with three different example traffic densities, A, is A,
are mean rate of vehicles and pedestrians per second. X axis represents specific
time ¢ in seconds, and y axis represents the probability of TTC < ¢ in given traffic
density.
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5 Model Validation

In this section, we describe the procedures that we carried out for model validation
and analysis of the results. Specifically, we first introduce the data set collected
from real traffic, then the pre-processing of the data and the actual validation. The
validation is conducted by comparing the prediction by the model against the real
distribution of TTC based on the collected data under the same traffic density.

5.1 Validation Data Set

The real-world data set for model validation is provided by the Swedish company
Viscando and contains the traffic data from recording at an unsignalized intersec-
tion in Linkoping, Sweden, from 2017/09/04 15:12 to 2017/09/07 11:17. Gen-
erally, the data set represents time-resolved trajectories of all types of road users
during these dates. More specifically, it captures different road users, such as
pedestrians, bicyclists, and vehicles, through edge processing of stereo-vision data
collected using Viscando’s sensor system. The trajectory info includes the times-
tamp and location coordinates speed and type of per road user.

The data set is provided as a CSV(comma-separated values) spreadsheet. Each
row is a trajectory snapshot that associates with a user id, timestamp, x and y
coordinates, speed and type of the road user. The position and speed of each road
user are measured up to 20 times per second, and all users within an approximately
30x30 meter square around the intersection are tracked. Figure 3 is a bird-view
picture of the location that explains the possible traffic flow at the location under-
recording. There are three entry—exit locations for vehicles clock-wise: one at the
lower-left (refer as A’), one at upper-middle (refer as *B’), and one at upper-right
(refer as *C’); thus, six directions of vehicle movement are expected. Besides, one
unsignalized pedestrian crossing is constructed close to "A’.

The pre-processing of the initial data set is mainly conducted in three steps,
each implemented and automated in a corresponding Python script. First, we di-
vide and sort the data by hour, as the traffic density is dynamically changing and
is different in each hour. We filter only the pedestrians with a trajectory that over-
laps the unsignalized pedestrian crossing and vehicles approaching the crossing
from the lower-left bound (the ’A’ location). The vehicles that are occurring from
the upper side (location 'B’ and ’C’) are either in a right angle turn or highly in-
terrupted by vehicles in other directions; thus, they are not considered for proper
TTC computation. Second, we identify the partial pedestrian trajectories within
the unsignalized pedestrian crossing and identify the closet vehicle that is ap-
proaching. Thirdly, we compute the TTC based on the location of the vehicle
and pedestrian as well as the vehicle speed and multiply the TTC distribution by
the probability of pedestrians’ occurrence based on Poisson distribution, according
to the first component in Equation (5).
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Figure 3: Bird view of the location for traffic recording at Linkoping, Sweden
(picture provided by Viscando)

After initial pre-processing of the original data set, we have obtained trajec-
tories for vehicles and pedestrians in 61 hours and 50 hours, respectively. We
filter the data with less than 20 vehicles and pedestrians in an hour since too few
TTC samples can be generated based on that low traffic volume. The distribu-
tion of TTC would be rather discrepant and random. As a result, 28 hours remain
with trajectories for both vehicles and pedestrians. We selected the 6 hours with
most pedestrians or vehicles and got a total of 10 hours of pre-processed data for
validation and analysis purposes, as listed in Table 1. The selected hours are dis-
tributed in all four days during recording and are typically distributed from 7 — 9
and 15 — 19. Pedestrian counts average 63 per hour and range from 30 to 104.
The vehicles have a mean rate of 159 per hour, with the least 100 and the most 332
vehicles.

5.2 Validation Result and Analysis

The validation results are separated in two figures, as Figure 4 and Figure 5, due
to the limitation of the page height. More specifically, Figure 4 contains six sub-
figures, corresponding to the first six selected hours in Table 1, and Figure 5 con-
tains four sub-figures for the last four selected hours. In each sub-figure, the TTC
distribution predicted by the model is plotted against the TTC distribution of the
real traffic data. The tail part with TTC less than 3 seconds is highlighted in yel-
low, which is the most critical part that is of interest for safety purposes in existing
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Table 1: Summary of the pre-processed data set for model validation

Date with Hour | Pedestrian Count ()\,) | Vehicle Count (\,)
2017-09-04 17 30 (0.008/s) 118 (0.033/s)
2017-09-05 07 67 (0.019/s) 332 (0.092/s)
2017-09-05 15 77 (0.021/s) 115 (0.032/s)
2017-09-05 16 69 (0.019/s) 106 (0.029/s)
2017-09-05 18 42 (0.012/s) 146 (0.041/s)
2017-09-06 07 51 (0.014/s) 260 (0.072/s)
2017-09-06 08 45 (0.013/s) 161 (0.045/s)
2017-09-06 15 73 (0.020/s) 100 (0.028/s)
2017-09-07 07 104 (0.029/s) 152 (0.042/s)
2017-09-07 08 71 (0.020/s) 100 (0.028/s)

studies [92] and in our work. We have also plotted the TTC distribution and com-
parison up to 10 seconds in the figures to show the general trend of the cumulative
TTC distribution. Yet, larger TTC values are considered safer in general and not
interested in safety analysis [60]. Our model can also give predictions above 10
seconds, yet they are beyond the scope and discussion in this work.

As indicated by the two figures and their sub-figures, the real distribution of
the low TTC (less than or equal to 3 seconds) is consistently under the prediction
by the model. In particular, 9 out of 10 selected hours have no distribution on
this part and only one (Figure 5a) hour has approximately 0.0009 distribution on
getting a low TTC. The mean difference between the real and predicted distribu-
tion for the selected 10 hours is 0.0164, with the maximum 0.0284 and minimum
0.0066. Since we aim to construct a worst-case model for the TTC distribution,
the validation result positively supports the expectation. It shows no exceptions
under different traffic densities for the low TTC part.

Even though scenarios with high TTC values are not considered critical in the
typical traffic scenarios, we still analyze the second part — a section with greater
than 3 seconds TTC in the plots. Generally, the model is still defensible and valid
in 9 of the 10 selected hours. One exception can be found and is shown in Fig-
ure 5d, where the real distribution of TTC surpasses the predicted distribution in
roughly 8.2 seconds. It is due to the randomness of vehicles or pedestrians’ arrival
in real traffic. In some cases, we may get very different vehicle—pedestrian interac-
tions with the same traffic density in an hour. To further clarify, our model is not a
worst-case model in the statistical sense, but it is instead a feasible approximation
based on Poisson distribution, especially for low TTC. In addition, the result in
Figure 5d could also be due to that we have a relatively low pedestrian count, 71 in
this hour; thus, the actual distribution of TTC could be highly stochastic that de-
pends on the crossing behaviors and vehicle—pedestrian interactions that appeared
in this hour. Given a larger volume of pedestrians and vehicles, which implicitly



5 Model Validation 79

02 02
Naturalistic Distribution Naturalistic Distribution
0.18 Predicted Distribution 0.18 Predicted Distribution
0.16 0.16
©» 0.14 » 0.14
] Ee]
5 5
$ 012 g 012
@ @
Vi 04 Vi 041
g g
=008 = 008
Py a
o e
Q006 Q- 0.06
0.04 0.04
002 J_J—_’___/ 002
0 0
0 2 4 6 8 10 0 2 4 6 8 10
t (seconds) t (seconds)
(a) 2017-09-04 17: 30/118 (b) 2017-09-05 07: 67/332
02 02
Naturalistic Distribution Naturalistic Distribution
0.18 Predicted Distribution 018 Predicted Distribution
0.16 0.16
5014 2014
§ §
g 012 o2
U o1 Ui o4
g g
i’ 0.08 i’ 0.08
o 2
Q- 0.06 o 0.06
0.04 0.04
002 0.02 ’_,_ﬁ_/—‘
0 0
0 2 4 6 8 10 0 2 4 6 8 10
t (seconds) t (seconds)
(c) 2017-09-05 15: 77/115 (d) 2017-09-05 16: 69/106
02 0.2
Naturalistic Distribution Naturalistic Distribution
0.18 Predicted Distribution 0.18 Predicted Distribution
0.16 0.16
5014 2014
s 5
g 0.12 g 0.12
@ ?
U o1 U o
g g
=008 =008
o a
<) <}
o 006 o 006
004 004
0.02 J_,_J—_J-" 0.02 F_J—-/'J//
0 0
0 2 4 6 8 10 0 2 4 6 8 10
t (seconds) t (seconds)
(e) 2017-09-05 18: 42/146 (f) 2017-09-06 07: 51/260

Figure 4: Comparison of cumulative TTC distribution, below 10 seconds, from
the model prediction and real traffic recording, for the first six selected hours. The
critical section with TTC less than 3 seconds is highlighted in yellow. The caption
in the sub-figures starts with the date, the hour, a colon sign, and then the count for
pedestrians and vehicles in the mentioned order.
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Figure 5: Comparison of cumulative TTC distribution from the model prediction
and real traffic recording, for the last four selected hours for validation, as given in
Table 1
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means more TTC values can be obtained, the distribution of TTC from different
hours is expected to converge and be more stable.

Overall, the validation results give a positive indication of the model as a pre-
diction of the worst-case distribution of the cumulative TTC for vehicle—pedestrian
interactions at unsignalized crossings, both in the critical TTC part and the other
part. Further, the model effectively predicts TTC distribution under different den-
sities in realistic traffic.

6 Model Utilization for Testing

In this section, we briefly introduce the auto-braking function from Volvo Cars
based on existing publications. We also explain how the distribution of TTC pre-
dicted by the model can be used as an input for critical test scenario generation for
this autonomous braking function.

6.1 Autonomous Braking Functions

Several automated emergency braking functions have been developed, such as
City Safety by Volvo Cars, Front Assist by Volkswagen, and Pre-SAFE Brake by
Mercedes-Benz [42]. While the techniques involved are diverse, the general pur-
pose of such systems remains the same: to support the human drivers in avoiding
collisions by automatically performing an immediate braking maneuver.

The autonomous braking function from Volvo Cars gives braking support to the
drivers in emergent situations where a collision is likely to happen, under a certain
speed limit [25]. The function supports the drivers in two ways: one is to raise
warnings if a frontal object is detected and identified as risky; the other is to apply
certain braking torque to decelerate the vehicle if it is too close to the frontal object
and the driver performs no intervention. The systems can be effective under many
different traffic conditions. For example, when the host vehicle is approaching
another vehicle standing still in front, a pedestrian illegally coming across the road
without noticing the approaching vehicle, or an animal passing the road during
nighttime etc.

Information of the braking function can be found through Volvo Cars and open
access pages [1]. Particularly, specifications of the early version of the braking
function have been published [24,25]. Some details of the development, compo-
nents, and mechanisms of the function are reported by Coelingh et al., where TTC
to the frontal object and speed of the vehicle are two primary factors that decide
whether the braking function should intervene or not, and when. According to
the publication, the system should only intervene when the estimated TTC to the
frontal object and the speed of the vehicle are below certain thresholds [24].
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6.2 Critical Test Scenario Identification

Our research context, as described in Chapter 3, is to deploy the critical scenario
identification approach for testing the autonomous driving systems. One principal
challenge is to model the distribution of the parameters, for example, the distri-
bution of TTC for vehicle—pedestrian interactions at unsignalized crossings for
testing the aforementioned auto-braking function.

Our model is a prerequisite for addressing this gap and serves as an input to
the critical scenario identification approach in testing the auto-braking function.
Specifically, the model provides a worst-case TTC distribution of the vehicle—
pedestrian interactions under different traffic densities to enforce the feasibility and
probability of a given scenario in the real world, particularly for those with a very
low TTC value and are of interest for the test. By using this model, the critical test
scenario generation is based on real distribution, rather than assumptions based on
no ground, and still includes the potentially rare events that are not recorded from
the traffic. In principle, as long as the system under test resists the frequencies
of the scenarios with critical TTC that our model generates, it is safe in practice
under the same traffic density, as it provides a worst-case prediction.

7 Discussion of Results and Limitations

We have established a model that predicts a worst-case distribution of TTC for
vehicle—pedestrian interactions at unsignalized crossings. The model is based on
assumptions that careless drivers and pedestrians are involved, for example dis-
tracted drivers or pedestrians that are not properly assessing the ongoing traffic.
A typical example of this worst-case scenario for autonomous driving is the fatal
accident by Uber where the autonomous vehicle missed the pedestrian in detection
and eventually hit the innocent person at an intersection [101]. In realistic traffic,
drivers are obligated to obey the regulations to remain safe. A recent study has in-
dicated that drivers’ behavior follows the Thread Avoidance Model — drivers focus
on avoiding the adverse events which also affects their decision to give the road to
pedestrians or not [13]. Besides, pedestrians’ crossing behavior is not always care-
less and is said to respect the Gap Acceptance Theory — pedestrians will check and
determine if the gap between two vehicles is large enough to cross [51,115]. Thus,
the real distribution of critical TTC is expected to be lower. Our model serves as a
worst-case probability that can take place, based on the Poisson distribution of the
vehicles and pedestrians’ arrival.

The model is simple because it includes only the macroscopic property of the
traffic — the density — and predicts merely the cumulative distribution of TTC at
unsignalized crossings. Risk factors for road safety can originate from many other
perspectives, such as the behavioral characteristics of the drivers and pedestrians,
vehicle conditions, and geometric uniqueness, such as the number of lanes or road
shoulder width, etc. [70]. Thus, the model can be extended in the future to be
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more sophisticated by including additional features of the traffic dynamics. Nev-
ertheless, the model also benefits from its simplicity. It can be utilized without
too much overhead and does not require extensive traffic information. Given that
road safety and testing the autonomous driving systems under realistic traffic setup
is a major concern, the investigation and exploration on modelling the traffic fur-
ther to provide realistic distribution of testing scenarios is significant and has great
potential. Our model can be used for further modelling and testing purposes.

A thorough validation of the model requires more real traffic data sets with
different traffic densities to evaluate the model’s accuracy and to study the differ-
ences of the prediction since the traffic is different by time and location. Even
though the validation shows a positive result by comparing the prediction by our
model against the real traffic data, the actual traffic flow and vehicle—pedestrian in-
teractions in a particular hour could lead to the actual TTC distribution exceeding
the prediction from the model. Our model provides a feasible approximation of
the worst-case distribution of TTC, especially for the critical TTC. Consequently,
the model also provides the worst-case distribution of critical scenarios, with low
TTC for vehicle—pedestrian interactions, for testing the autonomous driving sys-
tems under specific test scenes.

Our model, constructed in the context of testing autonomous driving systems,
aims to predict the distribution of TTC for critical scenario identification. Ex-
isting models reported in previous studies require the collection of real traffic
data, where the collection is usually performed only in specific periods and lo-
cations [34,54]. In addition, curation and annotation of the data can be quite cost-
and time-consuming. In contrast, our model does not rely on traffic recordings
and is easy to use. Similarly, other approaches for critical scenario identification
for autonomous driving, for example, using deep learning approaches [82], are
also depending on the collection of data and may still not represent all possible
scenarios in a real distribution. Thus, rare-occurring scenarios, like crashing or
near-crashing cases, may not be recognized correctly by the mentioned approach.
More specifically, studies that generate test scenarios by mining through the col-
lected sensor data [53,73] and reported accident records [36] will only be able to
produce scenarios within the existing data sets and represents only a subset of the
possible scenarios in the real world. In addition, scenarios recorded in the regular
road traffic, most of the time, are considered not critical [S8]. Our approach is not
subject to the limitations of the data collection by exploring the parameters of the
operational environment and optimizing the selection of parameters for generat-
ing critical scenarios for testing the autonomous driving systems based on realistic
distribution.

The critical scenario identification approach sheds light on the generation and
selection of risky scenarios for testing and will substantially reduce the number of
test scenarios and total test efforts. The approach must be grounded on realistic
distributions of the parameters involved in constituting a scenario. The absence
of the realistic distribution in the critical scenario identification approach would
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result in a biased frequency of scenarios or scenarios that are not even feasible
in the actual traffic. The significance of our model is to produce and provide such
distribution under different traffic densities and facilitate the testing of autonomous
driving systems. As a specific case, the model provides the necessary input to
the testing of an auto-braking function as discussed in Section 6. In principle,
it could also be used to test other autonomous driving systems that involve TTC
distribution at the unsignalized crossings. As a future plan, we aim to deploy
the model for generating critical scenarios for testing such autonomous driving
systems in real vehicles.

8 Conclusion

In this study, we have established a model for predicting the cumulative TTC dis-
tribution of vehicle—pedestrian interactions at unsignalized crossings. The model
is used as input for the critical test scenario identification for autonomous driv-
ing functions [100]. The model takes the traffic density as input and indicates a
worst-case TTC distribution. We have validated the model using a real traffic data
set collected in Sweden and have demonstrated using the model for critical test
scenario identification for an auto-braking function.

The model is the first step in improving the efficiency of testing autonomous
driving functions and can be extended in future work. Nonetheless, the value and
novelty of such a model and deploying it to test autonomous driving systems is
clear and significant.
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