13 research outputs found

    A low power read-out integrated circuit for multiple sensors

    No full text

    A Large Measurable Range Capacitance-to-Digital Converter for Smart Humidity Sensors

    No full text
    This study aims to propose a capacitance-to-digital converter (CDC) based on a third-order cascade of integrators with a feed-forward (CIFF) incremental sigma-delta modulator for smart humidity sensor application. Disguised zoom-in technology was proposed to enlarge the measurable range of the CDC. The input range of the CDC was 0–388 pF. The proposed CDC was realized using 0.18 μm complementary metal-oxide-semiconductor technology. Results show that the CDC performs a 13-bit capacitance-to-digital conversion in 0.8 ms. The analog system consumes 169.7 μA from a 1.8 V supply, which corresponds to a figure of merit (FOM) of 3.0 nJ/step. The proposed CDC was combined with a HS1101 humidity sensor to demonstrate its incorporation in an overall system design. The resolution was 0.7% relative humidity (RH) over a range of 30%–90% RH

    Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis

    Get PDF
    Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues

    Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating

    No full text
    An isocyanate with trimethoxysilane groups at the side chains (IPDI-M) was synthesized via an addition between the mercaptopropyl trimethoxysilane groups (MPTMS) and IPDI tripolymer (IPDI-T). Then, silane grafted isocyanate as the functional hard segment, castor oil as the soft segment, poly (ethylene adipate) diol (PEA) as the chain extender, and MPTMS as an end-capping reagent were applied to form a series of organosilicon hybrid bio-based polyurethane (CPUSi). The effect of the IPDI-M contents on the thermal stability, mechanical properties, and surface properties of the resulting product was systematically investigated. Profit from the Si–O–Si crosslinked structures formed from MPTMS curing, the tensile strength, and Young’s modulus of the resulting products increased from 9.5 MPa to 22.3 Mpa and 4.05 Mpa to 81.59 Mpa, respectively, whereas the elongation at break decreased from 342% to 101%. The glass transition temperature, thermal stability, transparency, hydrophobicity, and chemical resistance were remarkably strengthened for the obtained organosilicon-modified polyurethane with the increasing MPTMS content. At the end of the work, the thermal insulation coating that was based on CPUSi and ATO can effectively block near-infrared rays, and the temperature difference between the inside and outside of the film reached 15.1 °C

    Experimental Determination of the Rotational Constants of High-Lying Vibrational Levels of Ultracold Cs<sub>2</sub> in the 0<sub>g</sub><sup>–</sup> Purely Long-Range State

    No full text
    We report on a quantitative experimental determination of the rotational constants for the high-lying vibrational levels of the ultracold pure long-range Cesium molecules formed via photoassociation. The scheme relies on a precise reference of frequency difference in a double photoassociation spectroscopy, which is induced by two laser beams based on an acoustic-optical modulator. The rotational constants are obtained by fitting a nonrigid rotor model into the frequency intervals of the neighboring rotational levels deduced from the reference

    Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myocardial infarction model

    No full text
    Previous studies have demonstrated that biological aging has a negative influence on the therapeutic effects of mesenchymal stem cells (MSCs)-based therapy. Using a rat myocardial infarction (MI) model, we tested the hypothesis that silent mating type information regulation 2 homolog 1 (SIRT1) may ameliorate the phenotype and improve the function of aged MSCs and thus enhance the efficacy of aged MSCs-based therapy. Sixty female rats underwent left anterior descending coronary artery ligation and were randomly assigned to receiving: intramyocardial injection of cell culture medium (DMEM group); SIRT1 overexpression vector-treated aged MSCs (SIRT1-aged MSCs group) obtained from aged male SD rats or empty vector-treated aged MSCs (vector-aged MSCs group). Another 20 sham-operated rats that underwent open-chest surgery without coronary ligation or any other intervention served as controls. SIRT1-aged MSC group exhibited enhanced blood vessel density in the border zone of MI hearts, which was associated with reduced cardiac remodeling, leading to improved cardiac performance. Consistent with the in vivo data, our in vitro experiments also demonstrated that SIRT1 overexpression ameliorated aged MSCs senescent phenotype and recapitulated the pro-angiogenesis property of MSCs and conferred the anti-stress response capabilities, as indicated by increases in pro-angiogenic factors, angiopoietin 1 (Ang1) and basic fibroblast growth factor (bFGF), expressions and a decrease in anti-angiogenic factor thrombospondin-1 (TBS1) at mRNA levels, and increases in Bcl-2/Bax ratio at protein level. Up-regulating SIRT1 expression could enhance the efficacy of aged MSCs-based therapy for MI as it relates to the amelioration of senescent phenotype and hence improved biological function of aged MSCs

    Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way

    No full text
    <p>Hypoxia treatment enhances paracrine effect of mesenchymal stem cells (MSCs). The aim of this study was to investigate whether exosomes from hypoxia-treated MSCs (Exo<sup>H</sup>) are superior to those from normoxia-treated MSCs (Exo<sup>N</sup>) for myocardial repair. Mouse bone marrow-derived MSCs were cultured under hypoxia or normoxia for 24 h, and exosomes from conditioned media were intramyocardially injected into infarcted heart of C57BL/6 mouse. Exo<sup>H</sup> resulted in significantly higher survival, smaller scar size and better cardiac functions recovery. Exo<sup>H</sup> conferred increased vascular density, lower cardiomyocytes (CMs) apoptosis, reduced fibrosis and increased recruitment of cardiac progenitor cells in the infarcted heart relative to Exo<sup>N</sup>. MicroRNA analysis revealed significantly higher levels of microRNA-210 (miR-210) in Exo<sup>H</sup> compared with Exo<sup>N</sup>. Transfection of a miR-210 mimic into endothelial cells (ECs) and CMs conferred similar biological effects as Exo<sup>H</sup>. Hypoxia treatment of MSCs increased the expression of neutral sphingomyelinase 2 (nSMase2) which is crucial for exosome secretion. Blocking the activity of nSMase2 resulted in reduced miR-210 secretion and abrogated the beneficial effects of Exo<sup>H</sup>. In conclusion, hypoxic culture augments miR-210 and nSMase2 activities in MSCs and their secreted exosomes, and this is responsible at least in part for the enhanced cardioprotective actions of exosomes derived from hypoxia-treated cells.</p
    corecore