23 research outputs found

    Modeling Aerial Gamma-Ray Backgrounds using Non-negative Matrix Factorization

    Full text link
    Airborne gamma-ray surveys are useful for many applications, ranging from geology and mining to public health and nuclear security. In all these contexts, the ability to decompose a measured spectrum into a linear combination of background source terms can provide useful insights into the data and lead to improvements over techniques that use spectral energy windows. Multiple methods for the linear decomposition of spectra exist but are subject to various drawbacks, such as allowing negative photon fluxes or requiring detailed Monte Carlo modeling. We propose using Non-negative Matrix Factorization (NMF) as a data-driven approach to spectral decomposition. Using aerial surveys that include flights over water, we demonstrate that the mathematical approach of NMF finds physically relevant structure in aerial gamma-ray background, namely that measured spectra can be expressed as the sum of nearby terrestrial emission, distant terrestrial emission, and radon and cosmic emission. These NMF background components are compared to the background components obtained using Noise-Adjusted Singular Value Decomposition (NASVD), which contain negative photon fluxes and thus do not represent emission spectra in as straightforward a way. Finally, we comment on potential areas of research that are enabled by NMF decompositions, such as new approaches to spectral anomaly detection and data fusion.Comment: 14 pages, 12 figures, accepted for publication in IEEE Transactions on Nuclear Scienc

    3D Gamma-ray and Neutron Mapping in Real-Time with the Localization and Mapping Platform from Unmanned Aerial Systems and Man-Portable Configurations

    Full text link
    Nuclear Scene Data Fusion (SDF), implemented in the Localization and Mapping Platform (LAMP) fuses three-dimensional (3D), real-time volumetric reconstructions of radiation sources with contextual information (e.g. LIDAR, camera, etc.) derived from the environment around the detector system. This information, particularly when obtained in real time, may be transformative for applications, including directed search for lost or stolen sources, consequence management after the release of radioactive materials, or contamination avoidance in security-related or emergency response scenarios. 3D reconstructions enabled by SDF localize contamination or hotspots to specific areas or objects, providing higher resolution over larger areas than conventional 2D approaches, and enabling more efficient planning and response, particularly in complex 3D environments. In this work, we present the expansion of these gamma-ray mapping concepts to neutron source localization. Here we integrate LAMP with a custom Cs2LiLa(Br,Cl)6:CeCs_2LiLa(Br,Cl)_6:Ce (CLLBC) scintillator detector sensitive to both gamma-rays and neutrons, which we dub Neutron Gamma LAMP (NG-LAMP). NG-LAMP enables simultaneous neutron and gamma-ray mapping with high resolution gamma-ray spectroscopy. We demonstrate the ability to detect and localize surrogate Special Nuclear Materials (SNM) in real-time and in 3D based on neutron signatures alone, which is critical for the detection of heavily shielded SNM, when gamma-ray signatures are attenuated. In this work, we show for the first time the ability to localize, in 3D and realtime, a neutron source in the presence of a strong gamma-ray source, simultaneous and spectroscopic localization of three gamma-ray sources and a neutron source, and finally the localization of a surrogate SNM source based on neutron signatures alone, where gamma-ray data are consistent with background

    Background and Anomaly Learning Methods for Static Gamma-ray Detectors

    Full text link
    Static gamma-ray detector systems that are deployed outdoors for radiological monitoring purposes experience time- and spatially-varying natural backgrounds and encounters with man-made nuisance sources. In order to be sensitive to illicit sources, such systems must be able to distinguish those sources from benign variations due to, e.g., weather and human activity. In addition to fluctuations due to non-threats, each detector has its own response and energy resolution, so providing a large network of detectors with predetermined background and source templates can be an onerous task. Instead, we propose that static detectors use simple physics-informed algorithms to automatically learn the background and nuisance source signatures, which can them be used to bootstrap and feed into more complex algorithms. Specifically, we show that non-negative matrix factorization (NMF) can be used to distinguish static background from the effects of increased concentrations of radon progeny due to rainfall. We also show that a simple process of using multiple gross count rate filters can be used in real time to classify or ``triage'' spectra according to whether they belong to static, rain, or anomalous categories for processing with other algorithms. If a rain sensor is available, we propose a method to incorporate that signal as well. Two clustering methods for anomalous spectra are proposed, one using Kullback-Leibler divergence and the other using regularized NMF, with the goal of finding clusters of similar spectral anomalies that can be used to build anomaly templates. Finally we describe the issues involved in the implementation of some of these algorithms on deployed sensor nodes, including the need to monitor the background models for long-term drifting due to physical changes in the environment or changes in detector performance.Comment: 12 pages, 6 figures, accepted for publication in IEEE Transactions on Nuclear Scienc

    Results from CUORICINO experiment and prospects for CUORE

    Get PDF
    Cuoricino is a taking data bolometric experiment searching for neutrinoless double beta decay (0νDBD) of 130Te. The detector consists of an array of large cubic TeO2 crystal bolometers. Cuoricino works at about 10 mK in the Gran Sasso Underground Laboratory. Good energy resolutions were obtained (2.1 keV at 911 keV and 3.9 keV at 2615 keV at best). The counting rate in the region of 0νDBD is 0.18±0.02 c/keV/kg/y. The limit for the 0νDBD half lifetime is 2.0 × 1024 years at the 90% of C.L. This results correspond to a limit for the effective neutrino mass between 0.2 and 1.0 eV, depending on the nuclear matrix elements used. A large international collaboration is working on CUORE project, a future experiment with a mass of 741 kg of TeO2 crystal bolometers. The experiment aims to probe the neutrino absolute mass down to 50 meV and to understand if the inverted hierarchy holds in the neutrino mass pattern

    RESULTS FROM CUORICINO AND PROSPECTS FOR CUORE

    Get PDF
    CUORE will be an observatory for rare events consisting of a tightly packed array of TeO 2 bolometers, with a total mass of ∼740 kg, operating in the underground Gran Sasso laboratory. A first step towards CUORE is CUORICINO, a running experiment with 40.7 kg of TeO 2 . Present results from CUORICINO for the neutrinoless double beta decay of 130 Te will be presented here (T 0ν 1/2 ≥1.0×10 24 y, m ν ≤0.26-1.4 eV at 90% C.L.). The status of CUORE preparation and its physics potential, including dark matter searches, will be shown
    corecore